MARKET MODELS

VLADIMIR PITERBARG

1. BRIEF HISTORY LESSON

In the beginning of time, interest-rate options (caps/floors and swap-
tions) were valued using Black’s model. Black’s model was fast. Black’s
model was well-understood by all, including traders. And Black’s
model quickly became “industry standard” for these instruments.

Then academicians came. They felt uneasy about models that had
not been derived from the “first principles”. The no-arbitrage paradigm
was applied to interest rate markets. It all culminated with the creation
of HJIM framework.

To academicians’ dismay, traders kept using their beloved Black’s
model for valuing caps and swaptions. The reasons were pretty clear.
The “stochastic drivers” of Black’s model (LIBOR and swap rates) were
easily observable, and so were their volatilities. On the contrary, the
stochastic drivers of IIJM models (instantaneous forward rates) were
not directly observable, and neither were their volatilities. A Quant
equipped with an HJM model was forced to constantly perform trans-
lations between observable quantities and his model’s input parameters
(a process known as calibration). For most of the models, calibration
had proved to be too much of a chore, and easily exceeded an average
trader’s patience and knowledge base.

And then academicians, who by that time moved to Wall street,
had a bright idea. They embarked on a quest to create an HJM, no
arbitrage model in which caps/swaptions would be valued using Black-
like expressions, and where the input parameters would be directly
observable on the market.

And so the breed of “market models” was born.

Date: February 3, 2000.
These are lecture notes for Fixed Income II class for Financial Mathematics
program in the University of Chicago.
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2. INTRODUCTION

Black’s model for caps is derived under the assumption that LIBOR
rates (corresponding to all caplets in the cap) are lognormally distrib-
uted. Likewise, Black’s model for swaptions is derived under the as-
sumption that the corresponding swap rate is log-normally distributed.

Any no-arbitrage model in which some of the LIBOR or swap rates
are log-normally distributed deserves the name of a “market model”.

More broadly, any (no-arbitrage) model where the input parameters
are given in terms of “observables” (a subset of LIBOR and swap rates)
can also be called a market model.

For the purposes of this lecture we will understand “no arbitrage
model” as “HJM model”. The class of no-arbitrage models is quite a bit
broader than the class of HIM models, but HJIM models provide very
convenient technical tools (Ito calculus in particular) to be ignored.

Any HJM model is uniquely defined by the volatility structure of
instantaneous forward rates (see [Li1]). We will build market models
by choosing this volatility structure in such a way that observable rates
(LIBOR and/or swap) have the dynamics we want. This is our general
plan of attack.

Let us recall the notations. Risk-neutral measure is denoted by Q.
Brownian motion (under Q) is denoted by W; (once again we consider
one-factor models to save some trees). The model is specified by

df t,7) = =X, T)o(t,T)dt+ao(t,T)dW,,
dP(t,T) = r(t)P@,T)dt+ P, T)S(t,T) dWV,,
where
0% (t,T) B
T = —0 (t,T) .

The volatility structure o (-, ) is as yet unspecified.

3. SIMPLE EXAMPLE

Let us consider a single LIBOR rate, and try to choose volatility
structure in such a way that the option on this LIBOR rate (caplet) is
priced using Black’s formula.

The fixing date of the caplet is set to T, and the tenor to 6. We
define the forward LIBOR rate L (¢) by

_P,T)—P(t,T+6)
(t) = §P(t, T+ 6)
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A caplet (call option on L) pays
(L(T) - K)'

at time 7'+ & (note that the payoff (L (1) — K)" is determined at time
T, so that it is Fp-measurable, yet it is paid later at T'+6). Then (¢ (t)
is the caplet’s value at time ?)

c(t) = BE(Bpc(T)|F)
= BE(B.L,(L(T) - K)'| 7).
Let us change the measure to T’ + §-forward. We have,
c(t)y=P(tT+8E™ ((L(T) - K)'|F).

Note that L (t) is the value of a traded asset (6! (P (t,T7) — P (t,T + 6)))
divided by the numeraire P (¢,T 4 ¢); hence L (t) is a martingale under
QT+5-

Black formula can be derived if we assume that (W 1s a Brownian
motion 1n some measure)

(3.1) L(t) = exp ()\Wt—)\Qt/Q),
dL(t) = AL(t) dW,.

Note that the process defined by (3.1) is a martingale. So at least our
finding is consistent with our goal.

What is the equation for L () under Q™ in our HJIM model? For a
forward bond F'(t,S, M) = P(t,M) /P (t,S) we have (see homework
#VP1 or ([L2]))

dF (t,S, M) = F(t,S,M)vy(t,S, M) dW?,

For a TLIBOR rate we have (formally F' (¢, 7 4 6,T') is not defined, but

all formulas are still valid)
Lt)=6"(F(t,T+6T)—1)
and
dF (t, T +6T)=F@#,T+6T)y(t,T+6T)dWI
where

VT +86,T)=S(tT) - S(t,T+6),
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so that
dL(t) = & 'dF (T +6,T)
= §'F,T+6T)[SET)—S(E,T+06) dw e
= (LO+6H[EET) =S E,T+6)] dWi,

Then under Q7 *® measure,

(32)  dL() = %

Let us compare what we want (equation (3.1)) and what we have
((3.2)). We can identify WXt and W,. Then, as long as we choose

Y (t,T) and X (¢, T + 6) such that
SL(1)+1
SL (1)

S, T) =3 (t, T+ 8)] L(t) dW .

(3.3) vy, T+6,T)=M\

we are assured that
dL (t) = AL (t) dW]It,
and the caplet on L (t) is priced using Black’s formula (with volatility
A):
c(0) = PO, T+8§E™ (L(T)— K)")

+
— PO, T+ 8E <(L 0) AWETE 2Ty K) > ‘

So far, we have been presenting the motivation for why market mod-
els can be constructed. Now let us present the actual construction of
the model in which L (¢) has a lognormal distribution. We will pretty
much retrace the steps we have outlined above.

1. Specify (observe on the market) a caplet’s volatility A.
2. Specify the dynamics of the LIBOR rate L (t) under T+ é-forward
measure Q7 by

dL(t) = AL (t) dW/
so that
L(t) = L(0) M 7XT2
3. Define the volatility of the forward bond by
8L (1)
SL(t)+1
Note that v (-, T, T + 6) is an adapted process.

v (t, T +6,T)=Ax
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4. Define
y(t,T+6,T) = S,T)=—X(,T+96)

T+6
= / o (t,u) du.

T
Choose o (t,u) constant for u € [T, T + 6] so that the equation
X _OL{Y) = / o(t,u) du
SL(t)+1 T
is satisfied; namely, take
1. 6L(t)
tu) = Al
olbu) = AT +1
AL (1)
SL(t)+1
5. For w & [T, T + 6] choose o (t,u) arbitrarily. For example, set
AL ()
tou) = —
o) = ST 1

for all w.
6. Now the model is completely specified under T' + é-forward mea-
sure Q7. Change it to risk-neutral and that is it.

4. MARKET MODEL OF LIBOR RATES

In the previous section we constructed an IHJM model where a single
LIBOR rate followed a lognormal process. It is possible to extend that
on a collection of LIBOR rates.

Fix a tenor structure

To = 0<Ty <o < Ty,
6m - Tm+1 - Tm
Consider a collection of LIBOR rates
{Lm (O} s
where for each m, Ly, () is a LIBOR rate that resets at T, and with

tenor 6,, (so the corresponding floating cashflows pays at T,,,1), so
that

I () = PTn) = P T £8) P (L Tw) =~ P, To)
A SmP (t, T, 4 6) B 6P (t, Tiy1)

Suppose a collection of caplet volatilities {)\m}%;ll that we want to

match is fixed (observed on the market). Then the following theorem

holds.
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Theorem 4.1 (LIBOR market model). There exists an HJM model
on a probability space (Q,F) with risk-neutral measure Q such that
for everym, m=1,... M —1,

AL (t) = AL (t) W™

where VVtTm+1 is a Brownian motion under T,, {1 -forward measure QTm+1 .
The HIM model (that is, the collection of forward rate volatilities o (-,.))
is mot uniquely defined by caplet volatilities {)\m}i\ntll

Proof. Goes pretty much like the one in our simple example for a single

LIBOR rate. For details see [MR, Chapter 14].

Eaach LIBOR rate follows a lognormal process under its own measure
Q74 This guarantees that Black’s assumptions are satisfied. However,
it makes evaluation of instruments that depend on more than one LI-
BOR rate quite difficult. It would be much more convenient if we knew
the simultaneous dynamics of all LIBOR rates under a single measure.
It turns out that risk-neutral measure is not a convenient measure for
LIBOR market models, so something else would be useful.

Jamshidian (see [J]) was the first one to construct such a universal
measure. He called it a spot LIBOR measure.

Recall that risk-neutral measure corresponds to the choice of money-
market account as a numeraire. In a money market account, the money
is constantly reinvested at short rate.

Spot LIBOR measure corresponds to a “discretely compounded nu-
meraire”. The money is reinvested at LIBOR rates at times T, for the
next time period [T, T,,1]. if we start with $1 at time Ty, then the
value of the discretely-compounded money-market account is given by

Gp = 1,
Gr, = Gr, (14 60Lo (10)),
Gr, Gry (1+ 6111 (T1))

Note that

1+ 6;L; (T5) = P T
I -7
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so that

m—1

G,

m

(1+68;L; (1))

=0

ﬁPlTJ LT

=1

.

.

In between “rollover” dates {Tm} (G, 1s uniquely specified by no-

arbitrage arguments. If

m=0>

T <t <1y,
then
G.=P(,T,) Gr,.
Define a deterministic function (“index of a first rollover date after ¢”)
m(t) =inf{k € Z T, >t}.
Then

m(t)

Gy=P tTm(t)HP (T51,15).

Definition 4.1. A spot Libor measure Q¥ is a measure that corre-
sponds to Gy being a numeraire, namely the measure under which

P(t,Ty)
Gy
1s a martingale for each T,,, m=1,... M.

Theorem 4.2 (On spot LIBOR measure). The dynamics of the LI-
BOR rates under spot Libor measure Q¥ are given by

(4.1)

J
S L (1) L (1) L
dL; () = dt + X\; L; (t) dW, =1,....M -1
J() kzrn:(t) 1+6k+1L( T) + () t J ’ ) )

where W[ is a Brownian motion under QF.

LIBOR rates are of course no longer martingales under Q*. However,
the drifts in (4.1) are still expressed in terms of “observables”. An
important practical conclusion is that once we specify caplet volatilities
{)‘m}i\n/kll , we do not have to backup instantaneous forward volatilities

o (+,+) from them; we can use {\,}2_ and (4.1) to completely and

consistently specify the evolution of LIBOR rates { L, (¢ )}%;1 under

the same measure.
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Also note that the numeraire GGy is also specified in terms of ob-
servables, so we can “evolve forward” LIBOR rates and the numeraire
simultaneously (say in Monte-Carlo), only knowing caplet volatilities.

5. MARKET MODEL OF SWAP RATES

In [I.2] we constructed a swap measure, i.e. a measure under which
swaptions are valued by Black-like expression. For a swaption we have

K

+
%:BtE B;l ((1_P(tlytK))_CZP(tlytz)Tz> ft

=2

Using the value of the fixed leg as a numeraire,

K
Nt = Zp(tutz) T3,
=2

we get
K +
V, = NEV [N, ((1—P(t1,tK))—CZP(tl,ti)TZ) Fi
=2

EY ((F, - O)Y|\R),

K
Z P (t, tz) T3
=2

where Fy, is the swap rate,

P(tty)—P(tty)

Y, Pt )T
The swap rate is a martingale under the swap measure (why?). It is
pretty clear that we can find HJM model under which the swap rate is
actually log-normal. The procedure is quite similar to what we did for
LIBOR.

In the same way, we can construct a model in which a collection
of swap rates all have log-normal distributions under the appropriate
measures. As the formulas are unwieldy we refer the interested reader
to [MR] and [J].

Future discussion will concern market models of LIBOR rates, but
all considerations apply to market models of swap rates as well.

=

6. MARKET MODEL OF LIBOR AND SWAP RATES

Does not exist.
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7. CALIBRATION ISSUES

We are going to just barely scratch the surface of a very complex
issue of calibrating market models. Reading Rebonato’s books [R1]
and [R2] is mandatory for anybody interested in the subject. Also,
Appendix gives an illuminating example.

In market models, volatilities of LIBOR rates need not be constant,
nor the number of factors need be 1. In the most general form we can
write the following joint system for stochastic evolution of LIBOR rates

{L; 035"
(7.1)

dL; (t) /L (t) = p, (1) dt+§:ajn(t) dZ, (1), j=1,...,M—1.

It does not really matter what measure we use; this general form will
hold under any measure. The difference between different measures

will be in different drifts { 1 (t)}j]\/;l, that are in general will not be

deterministic functions, but some rather complex expressions involving
rates, volatilities, correlations, etc.

In the formula (7.1), N is the number of factors, {Z,}" | are inde-
pendent Brownian motions (under whatever measure we are working
in), a;n (t) are deterministic, time-dependent, instantaneous volatilities
of LIBOR rates.

Calibration is a process of specifying the time-dependent matrix of
instantaneous volatilities {a;, (t); j=1,... M -1, n=1,....N
so that market prices of some instruments are recovered by the model.

First and most important step in calibration is to make sure that the

I I

prices of caplets that correspond to the rates { L; (¢) }jj\{fl are recovered

=1
(after all, this is why we have market models). This is relatively easy.
To match the price of a caplet we just need to make sure that the total
volatility of a specific LIBOR rate, as given by the model, matches the

caplet Black’s volatility. The following constraints have to be satisfied:
Var [log L; (T;)] = A3, j=1,....M—1.

From (7.1), the variances are easily calculated,

Z/ agn(t)dt:)\z, j=1...,M—1.
n=1 0

There seems to be an awfully small number of constraints for a time-
dependent matrix of coefficients. Unfortunately, this is about all we can
do with market-implied information. The universe of actively traded

L >0}
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LIBOR-rate dependent instruments is very, very small, and there are
no other high-volume instruments to provide calibration data.

One can try to add information from the only other high-volume
sector, swaptions. This generally creates more problems than it solves!.

Another possible set of constraints may come from historical estima-
tion. One can try to match historically observed correlation with (7.1).
Correlation among LIBOR rates is easy to compute in the model. For
instantaneous correlations we have

dL; (1) dLm ()] &
o [0 T | - 2enem )

To get term correlation to date T', we integrate this formula,

Corr [log L; (T) ,log L (T)] = Y _ /0 ajn (1) ajm (1) di.

Of course, a number of problems arise immediately. Among them, what
is the time horizon T" to use? How to handle very unstable historical
correlations? and so on.

In the face of a problem of having too many parameters to calibrate,
and too few constraints to calibrate to, the most natural reaction is
to begin imposing external constraints. We can take instantaneous
volatilities constant, we can take fewer factors. It is quite clear that
the potential for overfitting is enormous.

e Market models do not provide any structure to the dynamics of
rates;

e They do not provide any connection between various “pieces of
the puzzle”;

e Having so many parameters, they have no predictive power;

e They have no potential to show any mispricing in the market
because they happily match whatever prices are thrown at them.

More on this subject can (and should!) be read in [R1, Chapter
18.5].

It does not of course mean that market models are useless. What it
means 1s that they have to be coupled with something else, something
that provides a sensible and stable description of the term structure of

IAcademic journals are awash in papers trying to calibrate models to both
caps/floors AND swaptions. The reality of the matter is, however, that these two
markets exhibit very little connection. A number of high-profile disasters involving
attempts to cross-trade caps/swaptions have recently been reported. As there are
no trading connection between the two markets, there is no modelling connection
either.
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caplet volatilities/correlations. This something has to come from an
external source. Market models themselves cannot provide it because
of their extreme flexibility. As a plausible approach, PCA as applied
by Yuri to the statistical model can be married to market models.

8. APPENDIX

Let us present a simple yet illuminating example on calibrating a
market model. It is lifted, pretty much unchanged, from [R2].

We will disregard what was said earlier, that theoretically a model
where LIBOR rates and swap rates both have log-normal distribution
does not exist. Consider a tenor structure

0 = T0<T1<T2<T3,
(Sm - Tm+1 — Tm
A LIBOR rate L; resets at date T7 and pays at T5. A LIBOR rate
Ly resets at Ty and pays at T3. In addition to these two rates, we have

a swap rate S, for a swap that begins at T} and pays at T, and 73. In
terms of the relevant bonds, we have

P,Ty)— P(t,T)

Ll (t> = 61P (t,TQ) )
P(t,Ty)— P(t,1T;5)

L (1) 5P (1, T3)

S - P(t,Ty) — P(t,Ts)

1P (t,Ty) + 89 P (¢, T3)

We can observe three volatilities from the market. One is the volatil-
ity of (the log of) L (t) from 0 to T3. Call it ;. The other is the
volatility of (the log of) L; () from 0 to Ty, call it 0y. Finally, from
the swaptions’s market, we get the volatility of (the log of) S (t) from
0 to Ty, call it v.

We would like to use this data to “calibrate” a market model for L
and Ly. We can assume that in between dates 1;,, their instantaneous
volatilities are flat. Therefore, to build a model, we have to specify (see

Figure 1)

e How the log-normal volatility of Ly is “split” between [0, 73] and
(11, T5);

e What is the correlation (call it p) of L; and Ls over the interval
[07 Tl] .
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How do we relate the swap rate to LIBOR rates? Easy,
P (T — P(t,1Ts)
1P (1, Ty) + 69P (L, T5)
P,Ty)—P(,Ty)+P(t,T3) + P (LT3
1P (1, Ty) + 69P (1,7T3)

S (t)

8.P (t,Ty) L P - Py
8. (t, Ty) + 62 (¢, T) 8.7 (t, Ty)
8,P (t,Ty) P(t,T,) — P (t,Ty)

X
1P (1, Ty) + 69P (1,T3) 89 P (t,T3)
= w1L1 (t) + w2L2 (t) .
We can assume that w; and wy (wye > 0, wy + wy = 1) are constant

over time (tests show that they are much less volatile than the rates,
so the approximation is reasonable). For ¢ = 17 we then have,

S(Ty) = wi Ly (T1) + wy Lo (T1).

Taking variance of both sides we get,

Var S (Tl) = w%Var Ll (Tl) + w%Var L2 (Tl) + 2w1wQCovar Ll (Tl) L2 (Tl) .
Then (approximately)
S*ATy = wilodT, + wils (0’2)2 Ty 4 2wywy Ly Lyo104,pT).

Here, everything can be market implied except for p (correlation be-
tween LIBOR rates over [0, T}]) and log-normal volatility o) of Le over
[0,71]. This is a very important point to understand: this volatility is
not available from the market!

Another equation connects volatility of Ly over [0,77] and [T7,T5]
(call the latter of). We have thus two equations,

S22 = wi2o? 4+ wil2(0))” 4 2unwy Ly Lyoiahp,
03Ty = (0y)" Ti+(a5)" (1, = Th).
Two equations and three unknowns (p, o}, 04). Thus, we have an

infinum combinations to satisty the equations,

e Do we take p =1 and choose o # d4; or
e Do we take 0f = 7}, and p strictly less than 1; or
e Something in between?

There is virtually no other market information we can use, so it is
pretty much a judgement call.
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Why the choice is important, however? Consider a periodic (rachet)
caplet, an instrument that pays

max { Ly (T3) — L1 (T7) ,0}

at time T5. Market in such instruments is very thin, but clients do ask
their brokers to quote prices. It is quite clear that a periodic caplet
will derive most of its value from volatility ¢}, so making a right choice
(between perfect correlation and constant vol) is very important.

| Vv | | |

| A | | |

g N | |
— - ; g
| g, | | |

- N | |

LIBORrate 1 - ’1 ’
| 0" | 0'" | |

: N : 2N : :

e N~ N |

LIBORrate 2 - ; ’; ’
To ! T, T, Ts

FIGURE 1

Hopefully, this toy example demonstrates the mind-boggling com-
plexity of calibrating a market model.
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