PDE Lattice for Hull-White model

Lecture notes

Vladimir Piterbarg Bank of America 1999-2000

1 Hull-White Model

• Formulas using short rate state x(t). Here a is mean reversion parameter, σ is volatility, F(0,t) is instantaneous forward rate (known at time 0)

$$r(t) = F(0,t) + x(t),$$

$$dx(t) = (\theta(t) - ax(t)) dt + \sigma dW(t).$$

• The process x(t)

$$x(T) = x(t) e^{-a(T-t)} + I(T) - I(t) e^{-a(T-t)} + \sigma \int_{t}^{T} e^{-a(T-s)} dW_{s},$$

$$I(\tau) = \frac{\sigma^{2}}{2} b^{2}(\tau), \quad b(\tau) = \frac{1 - e^{-a\tau}}{a}$$
(1)

• Bond prices are functions of short rate:

$$P(t,T) = p(x(t),t,T),$$

where the (deterministic!) function p(x, t, T) is given by

$$p(x,t,T) = \frac{P(0,T)}{P(0,t)} \exp \{-b(T-t) \cdot x + a(t,T)\},$$

 $a(t,T) = -\frac{\sigma^2}{2} \frac{1 - e^{-2at}}{2a} b^2(T-t).$

- HW model is Markovian in one factor:
 - Factor is short-rate state x(t) which is a Markov process (see formula (1)).
 - The whole term structure at time t is a deterministic function of factor x(t).

2 Rollback

- Rollback = backward induction.
- Given the value of an instrument at time T, compute its value at some previous time t, t < T.
- Values of all instruments (non-path-dependent) are deterministic functions of the short rate state x!
- Simple example: rollback a bond $P(\cdot, T)$
 - At maturity time T, the value of a bond is a function of x = x(T) that is equal to 1.0 for all x;
 - At some previous time t, (see formulas before)

$$P(t,T) = p(x(t),t,T).$$

• Same applies to all instruments. "Rollback" is a procedure where

Value at T as a function of $x(T) \Longrightarrow \text{Value at } t \text{ as a function of } x(t)$.

• Suppose we have a payoff X at time T that is a (deterministic) function of x(T), such that

$$X = V(x(T))$$
.

Denote the result of rollback (deterministic function of $x\left(t\right)$) by

$$\rho \{V, T \to t\} (x)$$
,

so that we have (compare with the diagram above) for the symbolic representation of rollback

$$V\left(x\left(T\right)\right)\Longrightarrow\rho\left\{ V,T\rightarrow t\right\} \left(x\left(t\right)\right).$$

• See Figure 1.

3 Forward measure in rollback

• From general risk-neutral valuation result,

$$\rho \{V, T \to t\} (x (t)) = \pi_t (X)$$

$$= \mathbf{E} \left(e^{-\int_t^T r(s) ds} X \middle| x (t) \right)$$

$$= \mathbf{E} \left(e^{-\int_t^T r(s) ds} V (x (T)) \middle| x (t) \right).$$

Apply T-forward measure

$$\rho\left\{V, T \to t\right\}\left(x\left(t\right)\right) = P\left(t, T\right) \mathbf{E}^{T}\left(V\left(x\left(T\right)\right) \mid x\left(t\right)\right).$$

- Of course P(t,T) is a deterministic function of x(t).
- We would like to write " \mathbf{E}^T part" as a deterministic function of x(t) as well.
- The quantity $\mathbf{E}^{T}(V(x(T))|x(t))$ can be computed if we know the distribution of x(T) given x(t) = x. Need the distribution under T-forward measure.

4 Forward measure in rollback (cont)

• Recall that under risk-neutral measure

$$x(T) = x(t) e^{-a(T-t)} + I(T) - I(t) e^{-a(T-t)} + \sigma \int_{t}^{T} e^{-a(T-s)} dW_{s}.$$

Change to T-forward measure. Now $W^{T}\left(\cdot\right)$ is a (driftless) Brownian motion,

$$dW_s = dW_s^T - \sigma b \left(T - s \right) \, ds.$$

Substitute

$$x(T) = x(t) e^{-a(T-t)} + I(T) - I(t) e^{-a(T-t)}$$

$$+ \sigma \int_{t}^{T} e^{-a(T-s)} (dW_{s}^{T} - \sigma b (T-s) ds)$$

$$= x(t) e^{-a(T-t)}$$

$$+ I(T) - I(t) e^{-a(T-t)} - I(T-t)$$

$$+ \sigma \int_{t}^{T} e^{-a(T-s)} dW_{s}^{T}.$$

• Denote

$$d(t,T) = I(T) - I(t) e^{-a(T-t)} - I(T-t),$$

$$N(t,T) = \sigma \int_{t}^{T} e^{-a(T-s)} dW_{s}^{T}.$$

• Then (under T-forward measure)

$$x(T) = x(t) e^{-a(T-t)} + d(t,T) + N(t,T).$$

5 Forward measure in rollback (cont)

• From previous slide

$$x(T) = x(t) e^{-a(T-t)} + d(t,T) + N(t,T),$$

where

- -d(t,T) is a deterministic function;
- -N(t,T) is a Gaussian random variable with **zero mean** and standard deviation

$$\nu(t,T) \triangleq \sqrt{\operatorname{Var} N(t,T)}$$

$$= \sqrt{\operatorname{Var} \left\{ \sigma \int_{t}^{T} e^{-a(T-s)} dW_{s}^{T} \right\}}$$

$$= \sqrt{\sigma^{2} \int_{t}^{T} \left(e^{-a(T-s)} \right)^{2} ds}$$

$$= \sigma \sqrt{\frac{1 - e^{-2a(T-t)}}{2a}}.$$

6 Forward measure in rollback (cont)

• Plugging the expression for x(T) in terms of x(t) into forward-measure valuation formula we get,

$$\mathbf{E}^{T} \left(V \left(x \left(T \right) \right) \middle| x \left(t \right) = x \right)$$

$$= \mathbf{E}^{T} \left(V \left(x \cdot e^{-a(T-t)} + d \left(t, T \right) + N \left(t, T \right) \right) \right)$$

$$= \int_{-\infty}^{\infty} V \left(x \cdot e^{-a(T-t)} + d \left(t, T \right) + \nu \left(t, T \right) \cdot z \right) n \left(z \right) dz,$$

where n(z) is the **standard** Gaussian density

$$n(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

- So how do we calculate $\mathbf{E}^{T}(V(x(T))|x(t)=x)$ as a function of x?
 - 1. Fix x;
 - 2. Perform numerical integration of $V\left(x\cdot e^{-a(T-t)}+d\left(t,T\right)+\nu\left(t,T\right)\cdot z\right)n\left(z\right)$ (as a function of z with x fixed);
- Usually we need to know $\mathbf{E}^{T}(V(x(T))|x(t)=x)$ for all x in some range; computing integrals for each x is very slow.
- We will discuss more efficient methods later.
- For now we just assume that if we have a function V(x), we can "rollback" it to some previous time.
- See Figure 1 again.

7 Forward-measure rollback – summary

• Our main goal so far: express

$$\rho\left\{V, T \to t\right\}\left(x\left(t\right)\right) = P\left(t, T\right) \mathbf{E}^{T}\left(V\left(x\left(T\right)\right) | x\left(t\right)\right)$$

as a deterministic function of x(t). Steps:

1. Express bond as a function of x(t);

$$P(t,T)|_{x(t)=x} = p(x,t,T).$$

2. Use some numerical scheme with payoff $V(\cdot)$ and standard deviation $\nu(t, T)$ to obtain function U(y),

$$U(y) = \int_{-\infty}^{\infty} V(y + \nu(t, T) \cdot z) n(z) dz;$$

3. Account for the drift. Since

$$\mathbf{E}^{T}\left(V\left(x\left(T\right)\right)|x\left(t\right)=x\right)$$

$$=\int_{-\infty}^{\infty}V\left(x\cdot e^{-a\left(T-t\right)}+d\left(t,T\right)+\nu\left(t,T\right)\cdot z\right)n\left(z\right)\,dz$$

we have

$$\mathbf{E}^{T}(V(x(T))|x(t) = x) = U(x \cdot e^{-a(T-t)} + d(t,T));$$

4. Looking ahead, the function U(y) will be computed (on step 2) for some knots y_n , n = 1, ..., N. To adjust for the drift (Step 3) we have to interpolate U over the knots so we can compute it for all y.

8 Twice-exercisable bond option

- A twice-exercisable Bermuda-style bond option is a right to buy a bond on one of the two dates.
- Consider the dates

$$0 = t_0 < t_1 < t_2 < t_3$$

and two strikes, K_1 (for date t_1) and K_2 (for date t_2).

- The bond that the holder has the right to buy is the discount bond $P(\cdot, t_3)$ (paying on t_3).
- A holder of twice-exercisable bond option has the right (not the obligation) to exercise on dates t_1 and t_2 ,
 - If he exercises on date t_1 he pays the strike K_1 and gets the discount bond;
 - If he exercises on date t_2 he pays the strike K_2 and gets the discount bond;
 - Once exercised, the option goes away.

9 Backward induction for Bermuda-style options

- American and Bermudan-style options are valued by looking at each exercise date "backwards".
- Denote E_i the "exercise" value of the option on date t_i , i = 1, 2;
- Denote H_i the "hold" value of the option on date t_i , i = 1, 2;
- Denote B_i the Bermuda-option value of the option on date t_i , i = 0, 1, 2;
- The holder will exercise on t_i (i = 1, 2) if and only if $E_i > H_i$.
- We have

$$H_2 = 0,$$
 $E_2 = P(t_2, t_3) - K_2,$
 $B_2 = \max\{E_2, H_2\},$
 $H_1 = \pi_{t_1}(B_2),$
 $E_1 = P(t_1, t_3) - K_1,$
 $B_1 = \max\{E_1, H_1\},$
 $B_0 = \pi_{t_0}(B_1).$

10 Backward induction for Bermuda-style options (cont)

• Everything can be expressed in terms of short rate(s). Define deterministic functions

$$e_{i}\left(x\right),\quad h_{i}\left(x\right),\quad b_{i}\left(x\right)$$

by

$$E_{i} = e_{i}(x(t_{i})),$$

$$H_{i} = h_{i}(x(t_{i})),$$

$$B_{i} = b_{i}(x(t_{i})).$$

• Rewrite in deterministic-function form

$$h_{2}(x) = 0,$$

$$e_{2}(x) = p(x, t_{2}, t_{3}) - K_{2},$$

$$b_{2}(x) = \max \{e_{2}(x), h_{2}(x)\},$$

$$h_{1}(x) = \rho \{b_{2}, t_{2} \rightarrow t_{1}\}(x),$$

$$e_{1}(x) = p(x, t_{1}, t_{3}) - K_{2},$$

$$b_{1}(x) = \max \{e_{1}(x), h_{1}(x)\},$$

$$b_{0}(x) = \rho \{b_{1}, t_{1} \rightarrow t_{0}\}(x).$$

• Final value of the Bermuda option (recall that x(0) = 0)

value
$$(t = t_0) = b_0(0)$$
.

- Two "rollbacks" need to be performed:
 - One from t_2 to t_1 with payoff $b_2(x)$;
 - The other from t_1 to t_0 with payoff $b_1(x)$.

11 Feynman-Kac for rollback

- The scheme above works well except actual mechanics of a "rollback" are not clear.
- We need to be able to compute

$$g(y) = \int_{-\infty}^{\infty} G(y + cz) n(z) dz$$
 (2)

where n(z) is a standard Gaussian density. This has to be done for all y (or at least all y in some range)!

- Direct integration is highly impractical.
- Recall your Stochastic Calculus (1999) lectures, Lecture 5 Theorem 2.

Theorem 11.1 (Feynman-Kac special case) The function g(y) as defined in (2) is equal to

$$g\left(y\right) = f\left(y,0\right)$$

where function f(y,t) satisfies the **heat equation**

$$\frac{\partial f(y,t)}{\partial t} = -\frac{c^2}{2} \frac{\partial^2 f(y,t)}{\partial u^2}$$

for

$$(y,t) \in \mathbb{R} \times [0,1]$$

with terminal condition

$$f(y,1) = G(y).$$

• This is a very standard problem from numerical analysis and there are tons of methods for solving this particular equation.

12 Integrating heat equation

• We need to solve the heat equation is presented in Theorem: find f(y,t) for

$$(y,t) \in \mathbb{R} \times [0,1]$$

such that inside the domain

$$\frac{\partial f(y,t)}{\partial t} = -\frac{c^2}{2} \frac{\partial^2 f(y,t)}{\partial y^2} \tag{3}$$

and for t = 1

$$f(y,1) = G(y). (4)$$

• In our equation $y \in (-\infty, \infty)$. Numerical methods work best in bounded domain. Choose some

$$-\infty < y_{\min} < 0 < y_{\max} < \infty$$

such that

$$|y_{\min}|, |y_{\max}|$$
 large (5)

(will choose later). Solve (3) in the domain

$$(y,t) \in [y_{\min}, y_{\max}] \times [0,1]$$
.

However, need boundary conditions for $y = y_{\min}$ and $y = y_{\max}$.

• Boundary conditions don't really matter as long as (5) is satisfied. Use constant boundary conditions for example:

$$f(y_{\min}, t) = G(y_{\min}), \quad t \in [0, 1],$$

 $f(y_{\max}, t) = G(y_{\max}), \quad t \in [0, 1].$ (6)

• Goal: solve numerically (3), (4) and (6).

13 Finite-difference scheme

• Recall the problem from previous slide: solve

$$\begin{split} \frac{\partial f\left(y,t\right)}{\partial t} &= -\frac{c^2}{2} \frac{\partial^2 f\left(y,t\right)}{\partial y^2}, \\ f\left(y,1\right) &= G\left(y\right), \quad y \in \left[y_{\min}, y_{\max}\right], \\ f\left(y_{\min},t\right) &= G\left(y_{\min}\right), \quad t \in \left[0,1\right], \\ f\left(y_{\max},t\right) &= G\left(y_{\max}\right), \quad t \in \left[0,1\right]. \end{split}$$

 \bullet Discretize the domain. Choose integers N, M and define

$$h = (y_{\text{max}} - y_{\text{min}}) / N,$$

 $y_n = y_{\text{min}} + h \cdot n, \quad n = 0, \dots, N,$

and

$$k = 1/M,$$

$$t_m = k \cdot m, \quad m = 0, \dots, M,$$

and

$$f_{nm} = f(y_n, t_m)$$
.

• Lattice terminal conditions:

$$f_{nM} = G(y_n), \quad n = 0, \dots, N.$$

• Lattice boundary conditions:

$$f_{0m} = G(y_0), \quad f_{Nm} = G(y_N), \quad m = 0, \dots, M.$$

• See Figure 2.

14 Finite-difference scheme (cont)

- Lattice equation at point $y = y_n, t = t_m$,
 - Time derivative

$$\frac{\partial f(y,t)}{\partial t} = \frac{f(y_n, t_{m+1}) - f(y_n, t_m)}{k}$$
$$= \frac{f_{n,m+1} - f_{nm}}{k}.$$

- Space derivative. Fix α ,

$$0 \le \alpha \le 1,$$

$$\beta = 1 - \alpha.$$

The space derivative is a mixture of second-order discretizations for the derivative on time slices t_m and t_{m+1} :

$$\frac{\partial^{2} f(y,t)}{\partial y^{2}} = \alpha \frac{f_{n+1,m} - 2f_{nm} + f_{n-1,m}}{h^{2}} + \beta \frac{f_{n+1,m+1} - 2f_{n,m+1} + f_{n-1,m+1}}{h^{2}}.$$

• Equation on time slice t_m ,

$$\frac{f_{n,m+1} - f_{nm}}{k} = -\frac{c^2}{2} \left(\alpha \frac{f_{n+1,m} - 2f_{nm} + f_{n-1,m}}{h^2} + \beta \frac{f_{n+1,m+1} - 2f_{n,m+1} + f_{n-1,m+1}}{h^2} \right).$$

• See Figure 3.

15 Finite-difference scheme (cont)

• Introduce dimensionless parameter τ ,

$$\tau = \frac{k}{h^2} \frac{c^2}{2}.$$

Then

$$f_{n,m+1} - f_{nm} = -\tau \alpha \left(f_{n+1,m} - 2f_{nm} + f_{n-1,m} \right) -\tau \beta \left(f_{n+1,m+1} - 2f_{n,m+1} + f_{n-1,m+1} \right),$$

SO

$$(-\tau \alpha f_{n+1,m} + (1 + 2\tau \alpha) f_{nm} - \tau \alpha f_{n-1,m})$$

$$= \tau \beta f_{n+1,m+1} + (1 - 2\tau \beta) f_{n,m+1} + \tau \beta f_{n-1,m+1}.$$
(7)

- The equation connects the value of the unknown function on time slices t_{m+1} and t_m . We know the value of the function for time slice $t_M = 1.0$. In backward induction, we use the equation (7) to solve for the value of f on time slice t_{M-1} , then t_{M-2} and so on until $t_0 = 0$.
- See Figure 2 again.

16 Explicit and Crank-Nicholson

• Main equation to solve

$$(-\tau \alpha f_{n+1,m} + (1+2\tau \alpha) f_{nm} - \tau \alpha f_{n-1,m})$$

= $\tau \beta f_{n+1,m+1} + (1-2\tau \beta) f_{n,m+1} + \tau \beta f_{n-1,m+1}.$

- Simplest case (explicit discretization) is when $\alpha = 0, \beta = 1$:
 - Equation

$$f_{nm} = \tau f_{n+1,m+1} + (1-2\tau) f_{n,m+1} + \tau f_{n-1,m+1};$$

- Same as trinomial tree: $\{\tau, 1 2\tau, \tau\}$ as rollback probabilities;
- Simple but only conditionally stable; if "probabilities" are negative, the method blows up.
- Best numerical properties is with Crank-Nicholson scheme, $\alpha = \beta = 0.5$:
 - Unconditionally stable for all discretization steps h and k;
 - Second-order accurate in time.

17 Matrix formalism

- Implicit schemes (including C-N) requires solving a tridiagonal linear system for each time slice t_m .
- Define time-slice vectors (column vectors)

$$F_m = \left[f_{0m}, \dots, f_{nm}, \dots, f_{Nm} \right]^T.$$

• Define tridiagonal matrix

$$R_{\xi} = \begin{pmatrix} -2\tau\xi & \tau\xi & 0 & \dots & 0 \\ \tau\xi & -2\tau\xi & \tau\xi & \dots & \dots \\ 0 & \dots & \dots & 0 \\ \dots & \dots & \tau\xi & -2\tau\xi & \tau\xi \\ 0 & \dots & 0 & \tau\xi & -2\tau\xi \end{pmatrix}.$$

- Let E be a unit matrix of the same dimensions.
- The time-stepping equation becomes (only for zero boundary conditions!)

$$(E - R_{\alpha}) F_m = (E + R_{\beta}) F_{m+1},$$

here F_m is unknown and F_{m+1} is known;

- For non-zero boundary conditions the matrix has to be modified slightly (how? consult a textbook!)
- Tridiagonal linear systems can be solved very fast!
- If using Matlab, use sparse data structures (help sparfun).

18 Choice of a domain

- Unanswered question: how to choose y_{\min} and y_{\max} ?
- General idea: choose a large enough interval so that the short rate $x(\cdot)$ has small probability of ever going outside it.
- For each t, x(t) is Gaussian with drift I(t) and standard deviation

$$\nu\left(0,t\right) = \sigma\left(\frac{1 - e^{-2at}}{2a}\right)^{1/2};$$

- Let T be the last "interesting" time; for option on a bond that is the maturity of the bond;
- Fix small probability γ (e.g. $\gamma = 0.05\%$);
- Find a standard normal quantile,

$$\mathbf{Q}\left(\left|\frac{x\left(T\right)-I\left(T\right)}{\nu\left(0,T\right)}\right|>z_{\gamma}\right)=\gamma;$$

• Rewrite for x(T),

$$\mathbf{Q}(I(T) - z_{\gamma}\nu(0, T) < x(T) < I(T) + z_{\gamma}\nu(0, T)) = 1 - 2\gamma;$$

• Set

$$y_{\min} = I(T) - z_{\gamma}\nu(0,T),$$

$$y_{\max} = I(T) + z_{\gamma}\nu(0,T).$$

19 PDE vs tree

- Both solve the same problem;
- PDE solver is harder to implement, but is well worth the extra trouble.
- Massive amount of research on numerical methods for PDE's is available.
- In lattice, we achieve decoupling of business logic (rules for exercise, etc.) and numerical methods (solving partial differential equations).
- Stability properties much better for lattice
 - Trees may blow up if large time steps are used; need to be careful;
 - Crank-Nicholson is unconditionally stable.
- In multi-dimensional models, trees have no chance against lattices.
- In conclusion, trees are good for
 - Initial evaluation of the model;
 - Rapid prototyping;
 - Modelling one-off instrument.
- Lattices are good for
 - Models in production;
 - Hi-volume runs where speed, accuracy and robustness are important.

Figure 1. Rollback

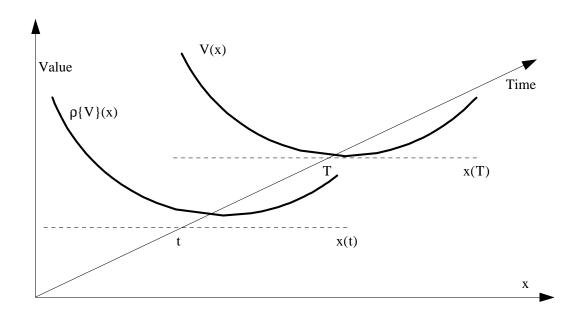


Figure 2. Finite-difference discretization

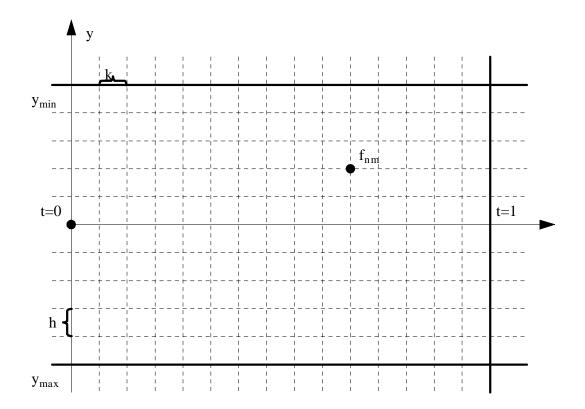


Figure 3. Time stepping in a lattice

