PDE Lattice for Hull-White model

Lecture notes

Vladimir Piterbarg
Bank of America
1999-2000

1 Hull-White Model

e Formulas using short rate state x (t). Here a is mean re-
version parameter, o is volatility, F'(0,t) is instantaneous
forward rate (known at time 0)

r(t) = F(0,8)+a(t),
dz(t) = (0(t) —az (t)) dt +odW (t).

e The process z ()

T
T (T) = T (t) e—CL(T—t) _|_ I (T) o I (t) e—CL(T—t) _|_ 0_/ e_a(T_s) de)
2
- ="

I(r) = (1), 0()

5 » (1)

e Bond prices are functions of short rate:

where the (deterministic!) function p (x,¢,7T) is given by

p(@t,T) = %exp{—bcr—t)-wa(t,:r)},
o(t,T) — —%1_2z_ab2(T—t).

e HW model is Markovian in one factor:

— Factor is short-rate state z () which is a Markov process
(see formula (1)).

— The whole term structure at time ¢ is a deterministic
function of factor z (t).

2

2 Rollback

e Rollback = backward induction.

e Given the value of an instrument at time 7', compute its
value at some previous time ¢, ¢t < 7T

e Values of all instruments (non-path-dependent) are deter-
ministic functions of the short rate state z!

e Simple example: rollback a bond P (-, 7))

— At maturity time 7', the value of a bond is a function
of = x (T') that is equal to 1.0 for all z;

— At some previous time ¢, (see formulas before)
P@#T) = p(a(1),1,T).

e Same applies to all instruments. “Rollback” is a procedure

where

Value at T' as a function of (I') = Value at t as a function of z (¢).
e Suppose we have a payoff X at time T that is a (determin-

istic) function of x (T'), such that

X=V(z(T)).

Denote the result of rollback (deterministic function of z (¢))
by

PV, T =t} (2),
so that we have (compare with the diagram above) for the
symbolic representation of rollback

V(@ (T) = p{V,T =t} (x (1))

e See Figure 1.

3 Forward measure in rollback

e From general risk-neutral valuation result,
pV,T =t} (z(t) = m(X)
= E (e_ o dsX‘ x (t)>
~ E (e_ftTT(s) BY (3 (T))‘ z (t)> .
Apply T-forward measure
piV.T =t} (x(t) =P tT)E" (V(z(T)]x(t).

e Of course P (t,T) is a deterministic function of z () .

o We would like to write “E” part” as a deterministic func-
tion of x (t) as well.

e The quantity ET (V (2 (T))| 2 (t)) can be computed if we
know the distribution of z (T) given z (f) = x. Need the
distribution under 7T-forward measure.

4 Forward measure in rollback (cont)

e Recall that under risk-neutral measure

T
2 (T) =2) e T D1 (T) =1 (t) e T V40 / e~ T=5) g,
4

Change to T-forward measure. Now W7 (-) is a (driftless)

Brownian motion,

Substitute

z(T) =

e Denote
d (t, T)
N (t,T)

dW, = dW] — ob (T —) ds.

z(t)e” T 4 1(T) — I (t)e "0

= I(T)—I1(@)e ™I (T —1t),
T
= 0'/ e~ =9 T,
2

e Then (under T-forward measure)

z(T)

=z (t)e ™ T 4L d(t, T)+ N (t,T).

5 Forward measure in rollback (cont)
e From previous slide
2(T) =2 (t)e T 1 d(t,T)+ N (t,T),
where

— d (¢t,T) is a deterministic function;

— N (t,T) is a Gaussian random variable with zero mean
and standard deviation

v(t, T) & +/VarN (t,T)

6 Forward measure in rollback (cont)

e Plugging the expression for 2 (T) in terms of z (¢) into
forward-measure valuation formula we get,

E' (V(z(])|x(t) = z)
— g7 (v (1} e 4 d (1, T) + N (¢, T)))

— /Oo 174 (x eI +d@t,T)+v(t,T)- z> n(z) dz,

—o0

where n (z) is the standard Gaussian density

1
n(z) = e 12,

e So how do we calculate ET (V (2 (T))| « (t) =) as a func-
tion of x7

1. Fix x;

2. Perform numerical integration of
V(g e T D 4dt, T)+v(t,T) 2)n(z) (as a func-
tion of z with z fixed);

e Usually we need to know ET (V (2 (T))| 2 (t) = z) for all z

in some range; computing integrals for each x is very slow.
e We will discuss more efficient methods later.

e For now we just assume that if we have a function V (z),

2

we can “rollback” it to some previous time.

e See Figure 1 again.

7 Forward-measure rollback — summary

e Our main goal so far: express
piV.T =t} (x(t) =P tT)E" (V (&(T))]x(t))
as a deterministic function of x (). Steps:

1. Express bond as a function of z (t);
P (thﬂx(t):x =P (l’, th) :

2. Use some numerical scheme with payoff V' (-) and stan-
dard deviation v (¢,7) to obtain function U (y),

U<y>:/_°°v<y+u<t,T>-z>n<z> dz;

3. Account for the drift. Since
E' (V(z(])|z(t) = =)
= / Vv (1; cem D L q (8 T) + v (t,T) - z> n(z) dz

—o0

we have

B (V (@ (D)|2(t) =) = U (-0 1d (t,7));

4. Looking ahead, the function U (y) will be computed
(on step 2) for some knots y,, n =1,..., N. To adjust
for the drift (Step 3) we have to interpolate U over the
knots so we can compute it for all .

8 Twice-exercisable bond option

e A twice-exercisable Bermuda-style bond option is a right to
buy a bond on one of the two dates.

e Consider the dates
O:t0<t1<t2<t3,
and two strikes, K; (for date ¢t1) and K, (for date t5).

e The bond that the holder has the right to buy is the dis-
count bond P (-, t3) (paying on t3).

e A holder of twice-exercisable bond option has the right (not
the obligation) to exercise on dates ¢; and ty,

— If he exercises on date t; he pays the strike K; and gets
the discount bond;

— If he exercises on date t5 he pays the strike K5 and gets
the discount bond;

— Once exercised, the option goes away.

9 Backward induction for Bermuda-style op-
tions

e American and Bermudan-style options are valued by look-
ing at each exercise date “backwards”.

e Denote E; the “exercise” value of the option on date t;,
1 =1,2;

e Denote H; the “hold” value of the option on datet;, i = 1, 2;

e Denote B; the Bermuda-option value of the option on date
ti,1=20,1,2;

e The holder will exercise on t; (i = 1,2) if and only if F; >
H;.

e We have

Ey = P(ty,t3) — K,
By, = max{FE,, Hy},
H, = m, (Bs),
E, = P(ti,t3) — K,
By = max{FE, Hi},
By = my, (By)-

10

10 Backward induction for Bermuda-style op-
tions (cont)

e Everything can be expressed in terms of short rate(s). De-
fine deterministic functions

ei(x), hi(z), b(x)
by

E, =
H; = hi(z(t))

e Rewrite in deterministic-function form

> >
= [\
/\/\/\/é\/-\/-\/-\
S N N N N S N

8

8

— O7

= p(x,ta,t3) — Ko,

= max {ey (z),hs (2)},
piba,ta — 11} (x),
= p(x,t1,t3) — Ko,

= max{ej (z),h (2)},
= p{b,t1 — to} (x).

Q
S
8

S
[\

™
Al
8 8 8

S O
[

e Final value of the Bermuda option (recall that x (0) = 0)
value (t — to) — b() (O) .
e Two “rollbacks” need to be performed:

— One from t, to t; with payoff by (z);
— The other from ¢; to ¢y with payoff by (x) .

11

11 Feynman-Kac for rollback

e The scheme above works well except actual mechanics of a
“rollback” are not clear.

e We need to be able to compute
g(y):/ G(y+cz)n(z) dz (2)

where n (z) is a standard Gaussian density. This has to be
done for all y (or at least all y in some range)!

e Direct integration is highly impractical.

e Recall your Stochastic Calculus (1999) lectures, Lecture 5
Theorem 2.

Theorem 11.1 (Feynman-Kac special case) The function g (y)
as defined in (2) is equal to

9 =f(y,0)

where function f (y,t) satisfies the heat equation

of (y,t) & f(y,t)

o 2 Oy

for
(y,t) € R x[0,1]

with termanal condition
fy,1)=G(y).

e This is a very standard problem from numerical analysis
and there are tons of methods for solving this particular
equation.

12

12 Integrating heat equation

e We need to solve the heat equation is presented in Theorem:
find f (y,t) for
(y,1) € R x [0, 1]

such that inside the domain

of (y,t) _ F9f(y,1)

o 2 O 3)

and fort =1
fy,1)=GCGy). (4)

e In our equation y € (—o00,00). Numerical methods work
best in bounded domain. Choose some

such that
‘ymin‘) ‘ymax‘ large <5>
(will choose later). Solve (3) in the domain
<y7t> € [yminaymax] X [07 1] .

However, need boundary conditions for ¥y = yn, and y =

ymax .

e Boundary conditions don’t really matter as long as (5) is
satisfied. Use constant boundary conditions for example:

f (ymin7t> = G (ymin> 5 t e [O, 1] , <6>
[Wmaxst) = G (Ymax), t€10,1].

e Goal: solve numerically (3), (4) and (6).

13

13 Finite-difference scheme

e Recall the problem from previous slide: solve

of (y,t) 3 f(y,1)

ot oy’

fw1l) = Gy), Y E [Yuin Ymax] »
f Wninst) = G (Ymin), t€[0,1],
f Wmaxst) = G (Ymax), £ €[0,1].

e Discretize the domain. Choose integers N, M and define

h = (ymax_ymin>/N7
Yn = Ymin +h-n, n=0,..., N,

and

E = 1/M,
tm, = k-m, m=0,..., M,

and

Jfom = f (ynatm> .

e [attice terminal conditions:
an:G(yn), TL:O,...,N.
e Lattice boundary conditions:

Jfom =G o), fvm=G(yn), m=0,...,M.

e See Figure 2.

14

14 Finite-difference scheme (cont)
e Lattice equation at point y = y,,t = t,,,

— Time derivative

af <y7 t) . f(ynatm-l-l) - f (ynatm>
o k

- fn,m+1 - fnm

= ’ .

— Space derivative. Fix a,

0 < a<l,
8 = 1-—a.

The space derivative is a mixture of second-order dis-
cretizations for the derivative on time slices t,, and

Lingt:
82f (y, t) _ afn—l—l,m - 2fnm + fn—l,m
Oy? h?
fn—l—l,m—l—l - 2fn,m—|—1 + fn—l,m—l—l
+03 2 :

e Equation on time slice t,,,

fn,m—l—l_fnm _ _i afn+1,m_2fnm‘|—fn—1,m
k 2 h?
n m — 2 n,m + n—1lm
‘|‘ﬁf +1,m+1 f};2 +1 f 1, —0—1) ‘

e See Figure 3.

15

15 Finite-difference scheme (cont)

e Introduce dimensionless parameter T,

ke
K22

-

Then
fn,m—l—l - fnm = —TW (fn—l—l,m - 2fnm + fn—l,m)
_Tﬁ (fn—l—l,m—l—l - 2fn,m+1 + fn—l,m+1) 5

SO

(_T@fn—l—l,m + (1 + 27’0&) fnm - Tafn—l,m) <7>
= T8 fartme1 + (1 = 2708) fumer + 7B fat,me1-

e The equation connects the value of the unknown function
on time slices t,,1 and £,,. We know the value of the func-
tion for time slice t;; = 1.0. In backward induction, we use
the equation (7) to solve for the value of f on time slice
tM—l; then tM_Q and so on until t() = 0.

e See Figure 2 again.

16

16 Explicit and Crank-Nicholson
e Main equation to solve

(_T@fn—l—l,m + (1 + 27’0&) fnm - Tafn—l,m)
= 78 fortme1 + (1 = 278) fomer + 7B famtme1-

e Simplest case (explicit discretization) is when o = 0, 3 = 1:
— Equation
fnm - Tfn—l—l,m—l—l + (1 - 27—) fn,m—l—l + Tfn—l,m—l—l;

— Same as trinomial tree: {r,1 — 27,7} as rollback prob-
abilities;

— Simple but only conditionally stable; if “probabilities”
are negative, the method blows up.

e Best numerical properties is with Crank-Nicholson scheme,
a=3=0.5:

— Unconditionally stable for all discretization steps h and
k.

?

— Second-order accurate in time.

17

17 Matrix formalism

e Implicit schemes (including C-N) requires solving a tridi-
agonal linear system for each time slice t,,.

e Define time-slice vectors (column vectors)
T
Foo = [foms s fam, s fvm] -

e Define tridiagonal matrix

—2t& 6 0 ... 0
T¢E =27¢& TE ... e
Re = 0 cee e 0
¢ =276 TE
0 . 0 T8 =218

e Let FE be a unit matrix of the same dimensions.

e The time-stepping equation becomes (only for zero bound-
ary conditions!)

(E — Ry) Fyy = (E+ R3) Fiyqa,
here F, is unknown and Fj, ; is known;

e For non-zero boundary conditions the matrix has to be
modified slightly (how? consult a textbook!)

e Tridiagonal linear systems can be solved very fast!

e If using Matlab, use sparse data structures (help sparfun).

18

18 Choice of a domain

e Unanswered question: how to choose ¥y, and Ymax !

e General idea: choose a large enough interval so that the
short rate x (-) has small probability of ever going outside
it.

e For cach ¢, z (¢) is Gaussian with drift I (¢) and standard

deviation
1 — €—2at 1/2
0,)=0c—] ;
V(9) o (20/) ?

e Let T be the last “interesting” time; for option on a bond
that is the maturity of the bond;

e Fix small probability v (e.g. v = 0.05%);

e Find a standard normal quantile,
x(T)—I1(T
o([PO=LD) -,

v (0,7)
e Rewrite for 2 (T),

QUT) —2zw(0,T)<z(T)<I(T)+ 2w (0,T)) =1-2;
o Set

Ymin = 1 (T)— 2w (0,T),
Ymax — I <T> + ZyV (O, T) .

19

19 PDE vs tree

e Both solve the same problem;

e PDE solver is harder to implement, but is well worth the
extra trouble.

e Massive amount of research on numerical methods for PDE’s
1s available.

e In lattice, we achieve decoupling of business logic (rules
for exercise, etc.) and numerical methods (solving partial
differential equations).

e Stability properties much better for lattice

— Trees may blow up if large time steps are used; need to
be careful;

— Crank-Nicholson is unconditionally stable.

e In multi-dimensional models, trees have no chance against
lattices.

e In conclusion, trees are good for

— Initial evaluation of the model,
— Rapid prototyping;

— Modelling one-off instrument.
e Lattices are good for

— Models in production;

— Hi-volume runs where speed, accuracy and robustness
are important.

20

Figure 1. Rollback

21

Figure 2. Finite-difference discretization

,
|
|
|
___ - , o
| | | | |
| | | | |
I N U N E SRR IR B S R
[i [i [| [
| | | | | | |
| | | | | | |
[N S T R R E
	!				
	!				
	”				
---4--7---r-gl---7---F--Aa---1r---—--a---fF---					
	m,				
[=					
\\\\\\\\,\\L\\\'\\,\\\\\\\\,\\L\\\\F\\\f\\ o					
I					
))					
N N N e e e s					
e e)					
B i e e T e B i IR B					
1 T Y R AR S I					
B O A Y [N R IR G I					
e e E e e R e e e i e Al S					
S T S P N AN SR R RN SRR R					
[i	[i [[
RN " S) (N S					
T T T T . T T					
)		b ot	
c | | T | | [- Pt
= . =

22

Figure 3. Time stepping in a lattice

e O

23

