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1 Basic Parameterization Issues

e Consider the dataset in table 1.

e This dataset is composed of three variables collected on 30 students. The 3 variables
are: an indicator as to whether the student passed a statistics class (0=fail, 1=pass),
the student’s grade in a prerequisite probability course (0=F, 1=D, 2=C, 3=B, 4=A),
and the student’s math SAT score.

e We'd like to model how the probability of passing the statistics course varies over the
past grades and math SAT scores.

e How might we do this?

e So far we’ve only considered simple models for Bernoulli trials in which the Bernoulli
parameter 7 is constant over all trials

e This implies the sampling density is
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where y is the vector of passing grade indicators for all 30 students.
e 7 doesn’t vary across individuals
e We have reason to believe that 7 varies over individuals— We need a better model
e How can we parameterize our sampling density to allow 7 to vary across individuals?

e One possibility is to assume that m; for ¢+ = 1, 2,...30 are all free parameters

Problem: as many parameters as data points

Perfect fit every time

Is this really explaining anything?
— How do we interpolate and/or extrapolate to make predictions?
e We need to put some structure on the problem.
e Lets assume that 7; varies as a function of our covariates for the sth individual.

e The basic problem is to find a function that takes combinations of prerequisite grades
and math SAT scores and returns a probability of passing.

e Figure 1 plots the raw data.



Passing Grade Grade in Prereq. Math SAT

0 3 925
0 2 233
1 3 045
0 4 582
1 2 281
1 1 576
1 3 972
1 4 609
1 2 959
1 1 043
1 3 576
1 4 525
1 0 574
1 1 282
1 2 574
0 3 471
1 3 995
0 2 957
0 4 957
1 4 084
1 3 299
0 2 517
1 4 649
1 2 584
0 1 463
1 3 991
0 2 488
1 3 263
1 3 953
1 4 049

Table 1: Hypothetical grades for a class of statistics students. From Johnson and Albert
(1999, p. 77).



What’s the functional form?

Might want to allow each combination of prerequisite grade and math SAT score to
have its own probability of passing.

— No real assumptions about functional form

— Would require a lot of data (5 x 600 = 3000 combinations of grades and math
SAT scores)

need more structure

How about the simple linear model m; = §y + grade; 5, + MSAT; 3,7

— This obviously won’t work because it can result in values of 7 outside of the [0, 1]
interval.

— However, the linear model does have one nice aspect: the effects are additive
making interpretation relatively easy

What if we transform the linear predictor so that it stays within [0, 1]7
We need to find a function that maps the real number line onto (0, 1).

It would be nice if this function were also monotone so that we could interpret the
signs of coefficients

Cumulative distribution functions are one set of functions that have these properties
If F(-) is some cumulative distribution function then we can model the probability of

passing as:

m; = F (B + grade; 1 + MSAT,;3,)

— m; is always in [0, 1]

— a negative coefficient implies that the probability of success is decreasing in that
variable

— a positive coefficient implies that the probability of success is increasing in that
variable

Once we estimate Sy, 51, and B2 we can plot the probability of passing as function of
prerequisite grades and math SAT scores.

Figure 2 displays such a plot

One commonly used cumulative distribution functions are the standard logistic distri-
bution function
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Figure 1: 3-D scatterplot of the statistics course data.
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e Using the standard logistic cdf results in the logistic regression or logit model
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e Another is the standard normal cumulative distribution function
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e Using the standard normal cdf results in the probit model
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2.1

Latent Variable/Random Utility Motivations

Simple Latent Variable Motivation

Above we transformed our linear predictor using a cumulative distribution function
largely for expediency

Can we motivate such a transformation from first principles?
Yes

Suppose that the binary response y; is the result of dichotomizing an unobserved (la-
tent) continuous response y;

yi = x0B + €

1 ifyr >0
vi= 0 otherwise

where ¢; is drawn from a symmetric density f(-) with mean 0 and fixed variance

While we can’t directly observe y; we do know how it is distributed given any values
of x} and S.

— It has mean x;3 and fixed variance

This implies that

Pr(ys = 118) = Pr(y; > 018) = | 1(uiIxB)dy;
0
where f(-|x;03) is the density function of latent continuous variable with mean x}3

Does [,° f(y;|xiB)dy; equal F(x]3) = ffif f(y710)dy;? In other words is this model
equivalent to the logit and probit models discussed previously?

Yes— Couple ways to show this

— Geometrically— draw densities and areas under the curve

— Algebraically—-

Pr(y; > 08) = Pr(x;8 + € > 0)
= Pr(¢; > —x}8)
Assuming that f(-) is symmetric
= Pr(e; < x;09)
)
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Figure 2: Logistic regression surface fitted to the statistics course data.



2.1.1 Identification Issues

e Note that the threshold that determines what values of y; produce values of y; =1 is
not identified and must be fixed at some constant value if a constant term is included
in the model.

e fixing the threshold at 0 is an innocent normalization

— Changing the threshold from 0 to ¢ and adding ¢ to the constant term doesn’t
change the values of 7; and consequently doesn’t change the value of the sampling
density

e Similarly the variance of the underlying distribution of y; is not identified
e fixing the variance at 1 (in the case of the probit model) is an innocent normalization

— if the standard deviation of the latent variable increases by a factor ¢ we can just
multiply all of our coefficients by ¢ and the the values of 7; will remain the same
leading to the same sampling density



2.2

Random Utility Motivation

Oftentimes dichotomous response variables indicate observed choices made by individ-
uals (voting, entering the labor force, etc)

In these situations it is often natural to think of a binary response regression model
arising from a random wutility model

Let’s look at the example of an individual #’s decision to vote (y; = 1) in an election
or abstain (y; = 0)

Each individual attaches some utility to voting and to abstaining.

The option with the higher utility is chosen

Problem: we don’t observe utility

However, we do observe characteristics of the options as well as the individuals

We can think of utility as a latent variable and then model it in terms of the attributes
of the choice options and the individuals:

ui(vote) = Wi + zivy + Ty (1)

u;(abstain) = wla + ziv, + N (2)

where w, and w, are vectors of characteristics specific to voting and abstaining that
affect the average person’s utility attached to voting and abstaining respectively; z; is
a vector of characteristics specific to individual 4; and 7, and 7;, are random distur-
bances.

the disturbances arise because we can’t perfectly observe utility— we can only model
utility based on observed choices

By assumption, individual 7 chooses to vote if the utility she attaches to voting is
greater than the utility she attaches to abstaining. Similarly, individual 7 chooses to
abstain if the utility she attaches to abstaining is greater than the utility she attaches
to voting.

This implies

1 if (u;(vote) — u;(abstain)) > 0
Yi = .
0 otherwise
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e Subtracting equation 2 from equation 1 gives us:

yz* = W;)a - W;a + z;’Y'U - Z;’Ya + Niv — Nia
= (w, — W, )a+ 2% — Ya) + (Mo — Nia)
=x+¢€

e if the original disturbances in the utility functions (the 7;s) follow normal distributions,

the ¢;s will also follow a normal distribution, which gives us a probit model

e if the if the original disturbances in the utility functions (the 7;s) follow type I extreme
value distributions, the ¢;s will follow a logistic distribution, which gives us a logistic
regression model

11



