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1. Introduction.

Many topics of interest to economists involve the passage of time. How long

does a typical spell of unemployment last?  Has the time between births

increased in recent years as women's relative earnings increased?  Answers to

these questions are desired both for the purpose of sorting out various

theories of social behavior and to answer questions of public policy.  For

example, the effects of Unemployment Insurance benefits on the duration of

unemployment remains a subject on continued interest and controversy (Atkinson

and Mickelwright [1984]), as does the effect of public sector dispute

resolvement procedures on strike durations in collective bargaining (Butler

and Ehrenberg, 1981); Schnell and Gramm, 1987).  Analysis of duration data is

complicated by the fact that duration data typically come in incomplete form;

that is, some observations will, at the time of survey, be unfinished. 

Sometimes the data will consist of complete and incomplete spells, as in

follow up studies of medical treatments. In other cases, such as the

Occupational Mobility and Job Tenure survey that the United States Bureau of

Labor Statistics conducts, employment spell lengths are incomplete of

necessity: individuals are asked for the "length of time working for the

present employer."  The set of special methods that have been developed to

deal with data with this structure are known as failure time models, that is,

they deal with data that measure the time until an event occurs.  Although the

methods originated in industrial engineering and the biomedical sciences,

where they were used to study machine breakdown and the effects of medical

procedures,  they had natural application to diverse social science phenomena

from wars to strikes to unemployment spells, and they were rapidly adopted in

economics, demography, and sociology.  

Duration modelling has a long and established history in biostatistics and

engineering, and it is not surprising that early uses in social sciences

borrowed liberally from models used in other scientific contexts.  Social
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science analysis of duration data raises new issues concerning sampling

structures, the completeness of models, and testing.  For example,

randomization in experimental design allows biostatisticians to be harmlessly

ignorant of "the true model" when estimating the treatment effect of a

particular drug. In contrast, econometricians have become painfully aware of

the modest role that measured covariates play in economic data and

consequently have been much more receptive to models where unmeasured

heterogeneity -- the term given to everything else that matters--plays a

significant role.  In a similar vein, many test statistics used in duration

analysis are applicable only for discrete covariates, or for orthogonal

factors.  In some areas discreteness and/or orthogonality can be generated in

the design of the sample, but such options usually are not available to

applied econometricians.  This chapter surveys and summarizes tools and

techniques that have proven useful for duration modelling, with an emphasis on

those that have become useful in applied econometric work.  The plan of the

chapter is as follows. The second section describes the fundamental tools of

duration models. The hazard function is defined and methods of estimation,

both parametric and non-parametric, are described.  In the third section

covariates are introduced, as are tests of model specification.  Two broad

classes of models --proportional hazards and accelerated failure time models -

- are introduced and illustrated using a popular data set.  The fourth section

of the chapter reviews applications of these tools in the search economics

literature.  Section five summarizes the results.

2. Duration data and distributions.

2.1 Survivor, Density and Hazard Functions

To fix ideas we consider the case of a homogeneous population; the extension

to account for heterogeneity --both observed and unobserved -- is pursued in

section 3. Consider then a non-negative random variable, T, which describes

the length of time until an event of interest occurs.  In most areas of
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econometrics it is customary to describe T by its cumulative distribution

function  

F(t)  =  Prob( T < t ),  0 < t < 44, [1]

which specifies the probability that the random variable T is less than some

value t.  For continuous random variables description by the probability

density function

f(t)  = lim Prob(t ## T < t + dt) [2]
  dt 660     dt

   MM F(t) =         
   MM t

provides an equivalent view.  This view of the data is the unconditional

approach: F(t) specifies, say, the probability that a spell of unemployment

will last no longer than t weeks. In applications it is frequently more

convenient to reason using conditional probabilities: "if unemployment has

lasted 10 weeks already, than the probability a worker will become employed

next week is now 10%."  Define the survivor function  

S(t)   =  Prob(T $$ t)

 = 1 - F(t) [3]

which give the probability that a spell will last t periods or longer.  The

hazard function  specifies the instantaneous rate of failure at T=t,

conditional upon survival to time t and it is defined as

h(t) =  lim  Prob(t ## T < t + dt **T $$ t )
  dt 6 0           dt

=  f(t)   [4]
   S(t)

Note that this representation of the random variable contains the same
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information as the more familiar characterization given by the CDF. To see

this observe that  h(t) = - d log(S(t))/dt . Upon integration and using that

S(0) / 1 we have

S(t)  =  exp( - II  h(s) ds) = exp(- 77(t)) [5]0
t

The term

77(t)  =  II  h(s) ds 0
t

is called the integrated hazard function  and appears frequently in diagnostic

tests.  Usually we require that lim  7(t) = 4 in order to impose a non-t 64

defective distribution of failure times, i.e., S( 4) =0 .  The shape of the2

hazard function provides a characterization of the underlying stochastic

process. If Mh(t)/ Mt > 0 the process is said to exhibit positive duration

dependence, while if the sign of the derivative is negative the process is

said to exhibit negative duration dependence (Heckman and Borjas,1980). 

Positive duration dependence means that the chances of failing are increasing

over time (or whatever metric that t represents) while negative duration

dependence means that the chance of failure falls with time.  The condition

that Mh(t)/ Mt / 0 � t defines a memoryless system, which uniquely defines the

exponential distribution.  Characterizing duration distributions as having

hazard rates that are monotonically  increasing or decreasing in t is purely

for convenience.  Real world data are rarely so nice, and in the reliability

literature engineers routinely encounter data characterized by "bathtub" -

shaped hazard rates: initially h(t) declines due to processes like infant

mortality; h(t) is constant during the "useful" life" phase; finally, failure
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rates rise during the "wearout" phase (Barlow and Proschan, 1981). 

2.2 Censoring Mechanisms

An important aspect of duration data is that some observations may be

incomplete; such an observation is termed censored .  Let T  be the random*

stopping time of the event of interest in the absence of censoring, and let C

be the censoring time.  Let * be a variable that records the value 1 if the

observation is censored, and zero otherwise.  The random variable observed is

T = min{ T , C}. If the censoring times have survivor function G(C), with*

associated density function g(c), and if censoring and failure times are

independent, the density function of T is

k(T)  = G(T) f(T) + g(T)S(T) [6]

The first term on the left hand side of [6] is the probability that an

observation fails at time T, that is,the joint event {t=T, C>T} occurs, while

the second terms gives the probability that T is a censored time.  

While the distribution of the stopping times frequently is unknown, the

distribution of the censoring times is (partially) under the control of the

sample designer.  In the case of Type I Censoring  the sample is observed for a

period of length Z, and all spells not completed at z are censored.  In this

case G(C) = 1 � c # Z, and G(C)= 0 � c > Z.  Alternative censoring mechanisms

include Type II Censoring , where sampling continues until the r-th smallest

failure time is observed, and Progressive Type II Censoring , where a given

fraction of the sample may be censored at several ordered failure times. There

are, of course, numerous other ways that a sample could be designed for

censoring.  The important point will be whether the censoring mechanism is

informative about the stochastic process under observation. For example,

studies of income (Hausman and Wise, 1977) show that sample attrition is
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income related; hence inference about the income determination process must

allow for cross effects with attrition.

2.3 Nonparametric Estimation.

Graphical plots of the survivor function , S(t), are a simple way to describe

duration data.  Ignoring censoring, for a sample of size N from a homogeneous

population the empirical survivor function (ESF) is

S$$(t)  = # of T $$ t           [7]
     N

For continuous data the ESF is a step function with steps (of size 1/N) at

each failure time; if there are ties in the data, [7] implies that the ESF is

a step function but that the size of the step is proportional to the number of

failures at each distinct failure time. To handle censored data, it is assumed

that if T = t and *=1, censoring happens immediately after time T.  With this

convention let t  < t  < .. < t  be the observed failure times in a sample of1 2 k

N. Let d  be the number of spells that end at time t ,and let m  be the numberi i i

of spells censored between t  and t .  The risk set , the set of spells thati i+1

are eligible to fail at time t , is defined asi

n   =  jj ( m   +  d  )i j j
  j $$ i [8]

Since h(t)dt is the probability of completing a spell in the interval t+dt

given that the spell lasts at least to t, a natural estimator of h(t) is

h$$(t ) = d  / n [9]i i i

The corresponding estimator of the survivor function is
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                               i
S$$(t )   =   JJ ( 1 - h $$  )i j

     j=1

     i  =  JJ ( n  - d  )/ nj j i          j=1 [10]

This is the Kaplan-Meier, or product-limit, nonparametric maximum likelihood

estimator of the survivor function.  Greenwood's formula3

var[ S $$(t )]   =     S $$ (t ) ''  d /(n (n  - d ))i i i j j j
2

       j ##i [11]

can be used to estimate the asymptotic variance of S.

To illustrate these methods Table 1 shows data on employment durations of

college graduates in their first job .  The first column contains the times4

when jobs were observed to end or were censored.  Observation were recorded at

3-month intervals for seven years.  Column 2 reports the number of individuals

known to be still employed at their first job as of the beginning of the time

interval. It is the number employed at the start of the last period minus

those who failed  or were censored in that interval. Column 3 of the table

contains the risk set - n  in [8] - while columns 4 and 5 show the numberi

censored and failed, respectively, in the time interval. In column 6 we show

the estimated hazard function given by [9], in this case stated as a monthly

rate,i.e, h(t ) = (d /n )*(1/3). The last column contains the estimatedi i i

survivor function, calculated according to [5]. Graphs of the hazard and the

survivor functions are shown in figure 1.
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Table 1
Employment Durations of College Grads in First Jobs

      Duration Number            Number   Number                    
      of Job   Still             censored failed   (Monthly)        
      (months) Employed          in       in       Hazard   Survivor
               at T     Risk Set interval interval Rate     Function

           0      703      703        0        3   0.0014    1.000

           3      700      700        0       17   0.0081    0.996

           6      683      683        0       31   0.0151    0.972

           9      652      651        1       33   0.0169    0.929

          12      618      618        0       60   0.0324    0.883

          15      558      558        0       22   0.0131    0.801

          18      536      536        0       29   0.0180    0.770

          21      507      505        2       33   0.0218    0.730

          24      472      471        1       40   0.0283    0.683

          27      431      430        1       17   0.0132    0.628

          30      413      408        5       28   0.0229    0.603

          33      380      376        4       22   0.0195    0.563

          36      354      350        4       16   0.0152    0.531

          39      334      333        1       10   0.0100    0.508

          42      323      318        5       13   0.0136    0.493

          45      305      295       10        9   0.0102    0.473

          48      286      280        6        8   0.0095    0.459

          51      272      269        3        8   0.0099    0.446

          54      261      258        3       10   0.0129    0.433

          57      248      247        1        4   0.0054    0.416

          60      243      230       13        7   0.0101    0.410

          63      223      221        2        1   0.0015    0.397

          66      220      216        4        2   0.0031    0.396

          69      214      203       11        2   0.0033    0.392

          72      201      191       10        4   0.0070    0.388

          75      187      177       10        1   0.0019    0.380

          78      176      161       15        1   0.0021    0.378

          81      160      130       30        1   0.0026    0.376

          84      129      129       --        -   --        0.373
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Figure 1: Hazard and Survivor Functions For Lancaster's Data

These duration data are typical of the types encountered in applied work, save

only that there are no covariates.  The hazard function gives some indication

of non-monotonicity: it appears to rise initially and then to fall. However,

the roughness of the data does not rule out multi-modality of the hazard.  The

noisiness of non-parametric estimates of the hazard function suggests that

some smoothing operation be applied to the estimated hazard function.  By

smoothing I mean that the estimate of the hazard rate at point t  is affected *

by the actual failure rate at nearby points t.  This can be done in several

ways --kernel estimation and explicit Bayesian methods are two obvious
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methods-- but the most popular method for smoothing is the assumption of an

explicit functional form for the density or the hazard rate.

2.4 Parametric Estimation.

Suppose that a family of duration distributions, F, has been specified up to a

finite parameter vector 2, and the censoring mechanism, G, also has been

specified up to a finite parameter vector <. The data consist of N

observations on T and a value of the indicator variable *, where *=1 indicates

that T is censored. Conditional on *, the contribution to the likelihood

function by the i-th observation is

L ( 22, <<**t , **) = G(t , <<) f(t , 22) if **  = 1i i i i i

= g(t , <<) S(t , 22) if **  = 0.  [12]i i i

With independent censoring < is not informative for 2 and the likelihood

function constructed from [12] factors into terms involving the censoring

mechanism, G, and terms involving the failure distribution, F. Under these

circumstances 2 can be estimated without regard to the precise form by which

censoring takes place. The log likelihood function, up to a constant, for the

sample is

£( 22****) =  ''  **  ln h(t , 22)  -    ''  77(t , 22) [13]i=1 i i i=1 i
N N

where [13] uses the relation between density functions and survivor functions

shown in [4].  The representation of the likelihood function given in [13]

stresses the hazard function approach, and, indeed, in applied work most

characterization of duration distributions is done in terms of the hazard

function.  Of course, in cases where there is no closed form solution for the

hazard rate the representation in terms of hazard rates and integrated hazard
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functions offers no advantage.  Subject to standard regularity conditions the

estimator, 2̂ obtained by maximizing [13] is consistent, and %N( 2̂- 2) is

asymptotically normal with mean zero and a variance that can be estimated by 

N x the inverse of the negative of the matrix of second derivatives. Note that

a consequence of not being specific about the censoring mechanism is that

Fisher's information matrix is not available for use.   

Table 2 lists hazard and integrated hazard functions for four specifications

popular in applied work.  Some hazard functions have monotone hazard rates,

Table 2

Parametric Models of Duration Distributions

Model Hazard Integrated Hazard

1.) Exponential 8 8t

2.) Weibull 8D(t) 8tD-1 D

3.) Log-logistic { 8D( 8t) }/{1+( 8t) } ln(1+( 8t) )D-1 D D

4.) Gompertz 8exp( (t) ( 8/ ()[exp( (t)-1]

like the Weibull, but these can be made non-monotone by adding higher order

powers in t to the specification.  Lundberg et al. [1985] provides a

description of such extensions, and an application to unemployment data.  Note

that the choice of an inappropriate functional form for the hazard function 

may torture the data beyond recognition.  For example, fitting an exponential

model to data that have an increasing hazard will produce a pattern of

misfitting similar to ignoring a trend in time series data.  Similarly, a data

that have a hazard that increases over some of its range and decrease on the

remainder will be ill-treated by a monotonic hazard function such as the

Weibull.  Diagnostic methods for analyzing goodness-of-fit are discussed in

section 3.

Applied work in econometrics has emphasized maximum likelihood methods in

fitting parametric models, but this is not the only approach. In the
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exponential specification a straightforward analysis of Y = log(T) yields the

probability density function

f(Y) = exp(Y - "" - exp(Y- "")), - 44 < Y < 44. [14]

with " = - ln( 8).  Write the regression as Y = " + W, with the density of W

given, from [14], by exp(W - e ), which is an extreme value distribution.  W 5

The variate W does not have mean zero; its expectation is -.5722 (the negative

of Euler's constant) and its variance is B /6 . 1.645.  Thus with uncensored2

data one could fit least squares to logged duration data and expect to recover

the parameters of interest, perhaps after transforming the OLS estimates.

These estimates would, of course, be inefficient relative to maximum

likelihood when the model is true. Also, there is a hint of how one might test

whether the model is adequate by comparing the variance of the residuals to

their expected value.  Of course, since the defining feature of failure time

models is the presence of censoring, and because regression models for

censored data are of comparatively recent origin in applied economics, few

examples of this approach are available.  Nonetheless, the idea provides a

useful way of distinguishing among families of duration models.

2.5 Sampling Issues

So far we have treated observations on durations as coming from a random

sample of all spells that occur. Thus T ~ f(T) refers to the population

distribution, and samples of this sort are referred to as flow samples

(Chesher and Lancaster, (1984), Ridder (1984)).  An alternative source of

duration data involves stock sampling , that is drawing observations from the

stock of objects in a particular state.  For example, locating a survey unit
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near the entry door to the unemployment office and surveying those who come in

would be sampling the flow of unemployment . In contrast, if a labor force6

survey were taken and the length of time unemployed recorded for those who

were unemployed at the time of the survey we would be sampling from the stock. 

In general the distribution of an observed time, T, will be different

depending upon whether the sample is from the flow or the stock. The

distribution of completed spells from the flow is F(t), with density f(t), as

we described above. We will use g to describe the density, and G the

distribution function, of spells sampled from the stock. The r-th uncentered

moment is denoted by µ   Suppose that a survey of the stock is taken at timer

T . At that time an interrupted spell of length t  is observed.  This is0 b

usually called the backward recurrence time, or elapsed duration.  The forward

recurrence time , t , is the time remaining until the spell ends. Completedf

durations satisfy t  = t  + t . To examine the relation between the twoc b f

sampling methods we first derive the distribution of elapsed duration and then

extend it to the distribution of completed spells.  Denote the flow into the

state at time t as p(t).  The probability that an individual who entered the

state at time t is still in it at time T  is 1 - F[T -t]. The density of0 0

elapsed durations, t , at date T  is the ratio of the stock that entered atb 0

time s (=T  - t ) and remains, divided by the total number of spells, or0 b

 p(T -t ) [1 - F(t )]0 b bg(t ) =                       b
T0
II p(s)[1 - F(T  - s)]ds [15a]0     - 44

This density clearly depends upon the entire previous history of the process,

as the denominator of [15a] makes plain.  However,the ergodic property for

regular Markov and semi-Markov processes (Karlin and Taylor[1975]) implies

that p(s) converges to a constant, p  and therefore that [15a] converges to~
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= 1 - F(t ) b            [15b]
µ

where we have used the fact that the integrated survivor function, I [1-

F(u)]du, equals the mean, µ, of the flow or population data.

The density of completed spell durations sampled from the stock is found by

the following argument. In the flow data the conditional density of t , given c

that t  < t  isb c

f(t ) cg(t **t ) =             c b
1 - F(t ) [16]b

Multiplying by the marginal density of t ,integrating out t , recalling that tb b b

< t , gives the marginal density for a completed spellc

t c
g(t ) = II g(t **t )g(t )dtc c b b b

0

t c
= II (f(t )/µ) dtc b

0

= t  f(t )c c          
    µ [17]

This is the first moment distribution corresponding to f(t). Its moments are

(Lancaster, 1990)

44
E(T ) = II t  f(t)dtr r+1

              0 µ [18]

For r=1 we have E(t) = µ /µ = ( F  + µ )/µ = µ + F /µ > µ.  Thus the expected2
2 2 2

duration of unemployment for individuals who are randomly selected from the

stock of unemployed is greater than the expected duration of the newly

unemployed. In the important special case where unemployment spells are
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exponentially distributed so that F  = µ  we have that the completed spells of2 2

unemployment sampled from the stock will be twice as long as those sampled

from the flow.  This puzzle is due to the fact that "random" samples of the

unemployed are not random samples of the unemployment process. This is the

problem of length biased samples . If the probability of being included in the7

sample is proportional to the length of the spell longer spells will be

disproportionately represented, which is what leads to the longer durations in

stock sampled data.  

3. Econometric Models for Durations

Social science data rarely can be regarded as drawings from a homogeneous

population.  Some adjustment must be made for heterogeneity among the

observations, perhaps along the lines used in general linear models.  Unlike

the linear model case there is no natural starting point where covariates

shift the mean around but leave other moments unchanged.  Consequently the

"coefficients" on covariates in duration models do not usually have simple

interpretations as partial derivatives.   Econometric approaches to modeling

durations have focused on parametric or semiparametric specification of the

hazard function in the presence of covariates.  Few attempts have been made to

distinguish one particular structure from another, although tests to do so are

becoming available.  For exposition purposes in this section I assume that

covariates are constant across time for a given individual and  observable. 

Extensions to time varying covariates and to the problem of unobserved

heterogeneity are deferred to sections 3.3 and 3.4.

3.1 Parametric Models.
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Standard approaches to parametric modeling assume a specific form for the

hazard function, h(t * X, $) = N(X, $,t).  For example, in the exponential case

the specification frequently used is h(t * X, $) = exp( X $).  Other forms of

the N function that do not depend on t are possible, but the exponential

specification has the advantages of simplicity and of imposing the non-

negativity constraint on the hazard rate.  The log likelihood function with N

observations, with * =1 indicating that the i-th observation is censored, is:i

��( $$) =  ''  (1- ** )X $$ - exp(X $$)t ) , [19]i=1 i i i i
N

which is globally concave in $.  Commonly the parameters of [19] are estimated

by maximum likelihood methods, but other options are available in certain

cases.  If all stopping times are uncensored, the linear model given in [14]

above can be used . In this case one regresses ln(t) against X, remembering8

that the least squares constant has to be adjusted because of the non-zero

mean of the error term in [14], but in other respects the model is a simple

linear one. Tests of the model can be based on the known distribution of the

residuals -- g { / (ln(t) - X $)} ~ exp(-exp( g)), a Type I extreme value

distribution. 

A second option is to note that with censoring the model in [14] becomes a

particular case of the censored regression model.  To date, applied

econometricians have found it more convenient to maximize the likelihood

function directly rather than to use the tools of censored regression, mainly

because software implementing general censored regression has not been widely

available.  An exception to this is the case of normally distributed

durations.  Programs are widely available for the censored normal regression
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model and, because the normal hazard function does not have a closed form

solution, the censored regression approach is more frequently used. 9

A. Specification Tests

Formal tests of a parametric duration model against a parametric alternative

that nests it can be carried out in the usual way by Likelihood Ratio,

Lagrange Multiplier or Wald tests.  Alternatives that are commonly used in

practice ( exponential, weibull, gompertz, generalized gamma) can be nested in

Box-Cox transformations -- t  = (t  - 1)/ 2 if 2 � 0, = ln(t) if 2=0 -- and a* 2

test of 2 = 2 , where 2  is the transform implied by the model specified under0 0

the null, can indicate whether the assumed model adequately characterizes the

data.  For example, in the exponential model estimated by maximum likelihood

the test would examine whether 2 = 1.

As in linear regression models, alternatives to the specification ln( N(X, $,t))

= X $ are possible.  Adding powers and cross-products to X $ permits tests of

functional form as in standard applications of the RESET test (Ramsey and 

Schmidt, 1976).  

To illustrate the parametric approach I follow tradition (Kiefer, 1988a;

Horowitz and Neumann, 1989a; Green, 1993) and apply these methods to Kennan's

strike data, (Kennan, 1985).  The data consist of 566 observations on

durations of contract strikes involving 1000 or more workers.  Observations

were taken from January, 1968 to December, 1976.  Kennan's focus is on the10

effect of business cycles on strike durations, with cyclical effects measured
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by the Index of Industrial Production (INDP). Strike data also exhibit some

seasonal fluctuations as well, so monthly or quarterly indicators are

frequently included.  Horowitz and Neumann (1989a) found that seasonal effects

were confined to the first quarter of the year, or to the month of February if

monthly detail is given.  Thus the data consist of the starting year and month

of the strike, the value of INDP at the start of the strike, and the length of

the strike in calendar days.

All of the strikes reported in Kennan (1985) are complete; there is no

censoring.  To illustrate the use of specification tests in the presence of

censoring the data have been censored according to:

t = min (t ,c) [20]*

where t = observed duration, t  = uncensored duration, c = censoring time, and*

* = 1 if the observation is censored. Typically in economics censoring of

duration times occurs because events of interest have not ended when  data

gathering ends.  Thus longer spells are more likely to be censored.  To 11

generate this type of censoring I followed Horowitz and Neumann [1989a] and

defined c = 40 + 6u,  where u is a uniform [0,1] random variable.  This

produced a censoring rate of 36%.

The parametric model considered is an exponential model, which has the form

t  ~ exp(X $$)exp(-exp(X $$)t )  [21]* *

where X = (1, INDP, FEB).
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Table 3

Maximum Likelihood Estimates
of Kennan's Strike Duration Data

S))))))))))))))))))))))))))))))))))))))

Model
Variable Extended Extended
       Exponential Exponential Weibull Weibull         
S))))))))))))))))))))))))))))))))))))))

INDP -3.3035 -3.7652 -3.2797 -3.7348
(1.078) (1.129) (1.077) (1.116)

FEB 0.5676 0.5215 0.5633 0.5170
(0.256) (0.259) (0.253) (0.256)

INDPxFEB -- 7.0655 -- 6.9999
(4.142) (4.094)

INDP -- 6.1589 -- 6.08922

(18.79) (18.58)

Intercept 3.7161 3.7065 3.7139 3.7041
(0.055) (0.072) (0.055) (0.071)

D 1.0 1.0 0.990 0.989
-- -- (0.45) (0.45)

� -800.568 -799.185 -800.546 -799.158

Column (2) of table 3 contains the results of fitting an exponential model to

Kennan's data.  If this specification is deemed adequate, Kennan's conclusions

would be upheld.  The presence of cyclical and seasonal effects are indicated

by both INDP and FEB being statistically significant.  One check on the

adequacy of the exponential specification is to embed the model in a more

general specification.  In this case the power series transformation leads

directly to the Weibull model, estimates of which are shown in column (4) of

the table.  The shape parameter, D, which is fixed at 1 in the exponential

model, changes hardly at all when left unconstrained, and neither do the other
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parameters.

One source of possible misspecification in parametric regression models is the

mean function, E(t ) = exp(-X $), for the exponential.  To test for this*

possibility the model was re-estimated with powers and cross-products of the

variables.  Note that because FEB*FEB=FEB the extended model adds only the

INDP  and INDPxFEB terms.  Redundancies of this sort arise especially when2

indicator and/or trend variables are included.  The specification test is

implemented as a likelihood ratio test, and comparison of columns (2) and (3)

yield a P (2 d.f.) value of (-2*(-800.548  + 800.546) = .044.  From this I2

would conclude that the Weibull model is not favored over the exponential

specification.

It is possible to perform these tests jointly.  Column (5) of table 3 reports

estimates for the extended Weibull specification which, when compared with the

exponential specification in column (2), yields an P  (3 d.f.) test statistic2

of 2.82.  This result also does not suggest significant departure from an

exponential model.  

An alternative test of the exponential specification can be obtained using

White's Information Matrix test (White, 1982).  The IM identity in this case

is 

H + G'G = N   ''  { gg    + gg  - (1- ** )} X X , [22]-1 N 2 '
i=1 i i i i i

where

gg  = (1- ** ) - exp(X $$)t .  [23]i i i i

Evidently, the IM test considers whether the variance of the censored

exponential is correctly specified and whether it is correlated with the
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regressors or their squares.  Several authors (Chesher and Spady (1991),

Kennan and Neumann (1988), Orme (1990)) indicate that critical values obtained

from the P  asymptotic distribution of the IM  test are seriously inaccurate,2

and recommend caution in applying the test.  Horowitz (1994) shows that the

bootstrap can control the size problem, but this approach has not yet seen

wide use in applied work.

The exponential model does not lend itself to testing for other forms of

misspecification, because even with regressors it still is a "one-parameter"

model.  Two-parameter models such as the weibull, with shape parameter D, and

the normal distribution, with standard deviation F, afford the opportunity to

test if these parameters vary with regressors x.  Horowitz and Neumann (1989a)

illustrate these tests in the censored regression framework, but the methods

also work using likelihoods.

As in linear models, visual analysis of the data is useful for uncovering

model inadequacies that may not be detected by formal tests.  Chesher,

Lancaster, and Irish (1985) provide a diagnostic based on the integrated

hazard function.  For the exponential model this test is very simple.  Let Li

= ln(t ) - X $.  Because $ must be estimated define the residuals v  = ln(t ) -i i i i

X b, where b is a consistent estimate of $.  The empirical distributioni

function (EDF) of v is the Kaplan-Meier (1958) estimate.  The test consists of

plotting log[-log[S(v )]] against v . If the model is correctly specified thei i

plot should reveal a scatter around a 45  line.  Figure 2 shows this graph foro

Kennan's strike data.
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Figure 2

The agreement of the strike data with the model is evident at higher levels of

v (longer strikes) but something clearly is amiss at the lower end.  There is

evidence of a shortage, so to speak, of short strikes. Short strikes in

Kennan's data correspond to strikes lasting less than 2 weeks ( v  < -3 ). i

Thus the data suggest that strike durations are not completely described by an

exponential model, but that departures from this model are concentrated in the

lower tail of the error term. A natural question to ask is whether the

departures from the maintained model shown in figure 2 affect the inferences

one would draw about the relation between strike length and business cycle

conditions.  To ask this question we need to examine a broader class of
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models.

3.2 Semiparametric Models.

The exponential model described in the previous section was convenient for

estimation and for use but, as the graphical test indicated, it proved to be

too restrictive.  Although several formal tests did not reject the exponential

formulation, the graphical test gave evidence of model failure but did not

suggest an alternative specification.  A variety of semiparametric models that

nest the exponential model as a special case are available.  The term

"semiparametric" has come to have several meanings in the area of duration

models, some of which seem to conflict. The standard description of

semiparametric has been, following Cox [1972], the case where the parameters

of interest are of finite, and fixed, dimension and the nuisance parameters

are of infinite dimension.  I continue to use the term semiparametric to

describe models that do not fit this definition but which have become popular

in applied research.  Although this tortures the language, I use because it

captures the spirit of the approach, even where it involves estimating lots of

parameters.

3.2.a Proportional Hazard Models

Recall that the hazard function h(t *X) in principle allows a wide range of

interaction among durations, t, and regressors, X. To obtain generality a

model has to restrict the possible range of interactions.  Cox (1972)

introduced the continuous proportional hazard model by specifying:

88(t **X) = 88 (t)exp(X $$), [24]0

that is, by restricting the interaction of t and X to be multiplicative
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through the baseline hazard rate , 8 (t), and the regressors embodied in the0

link function, exp(X $).   Cox (1972, 1975) showed that the parameter $ could12

be estimated without specifying the form or family for 8 .  Specifically,0

order the durations from smallest to greatest - t  < t  ....< t .  The 1 2 N

conditional probability that observation 1 ended at t , given that any of N1

observations could have ended, is (ignoring censoring)

    88(t ,X, $$)     1                 

   ''  88(t ,X , $$)   [25]i=1 1 i
N

which, given the proportionality assumption, reduces to

    exp(X $$)   1                    

 ''  exp(X $$)  [26]i=1 i
N

Similarly, the conditional probability of the j-th shortest duration is the

ratio of hazard for the individual completing a spell at time t  to the sum of j

the hazards for individuals whose spells were in progress just prior to t . j

To accomodate censoring a spell that is censored between durations t  and t j j+1

appears in the summation in the denominator of [26] for observations 1 through

j, but not in any others, and never enter the numerator.  In this manner we

use the information that the spell was in progress, and thus could have

failed, up to a certain date, and thereafter we have no further information

about the spell.

Cox (1972), Kalbfleisch and Prentice (1973), and Breslow (1974) show how to

estimate the baseline survivor function, S (t) = exp(- I  8 (s)ds), for the0 0 0
t

proportional hazards model.  The baseline survivor function is rarely used by

itself, although as we shall see, it plays a significant role in diagnostic

tests.
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Kiefer (1988a) notes that the proportional hazard specification has a linear

model interpretation; specifically that it satisfies

-ln( 77 (t))= G(t) = X $$ + v , [27]0

where G( C) is a monotone function and v is a random variable distributed as a

unit extreme value; i.e., F(v) = 1 - exp(-exp(v)), - 4 < v < 4.  This feature

of the proportional hazard model facilitates development of diagnostic tests.

Cox's proportional hazard model is a continuous time specification, which

leads to difficulties in developing formal tests and to problems in

implementation when duration data are discrete. In the continuous case, one

has to find moments or distributions of empirical processes, and this can be

complicated.  Similarly, ties are a minor nuisance if they are rarely present,

but a major inconvenience if they are. In such cases there is an incentive to

using a discrete data version of Cox's model.  Han and Hausman (1990) and

Kiefer (1988b) provide extensions to Prentice and Gloeckler's (1978) grouped

data treatment of the PH model that address the discreteness issue.  The

approach is to specify a specific form of the link function N(X, $) and to

estimate the parameters of a flexible duration model.  For example, treating13

X as fixed, using N(X, $) = exp(X $) as the link function, and assuming that 

individual durations are observed at distinct points t  < t  <...<t , the 1 2 K

probability that an observation with characteristics X survives the i-th

interval, given survival through the (i-1)-th interval is

     t i
Prob (T $$t **T>t )  =  exp[- II h (s)ds exp(X $$)i i-1 0

  t i-1

= 11 (X, $$, (() [28]i
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The conditional probability of a spell ending in interval i is 1 - 1 ( C). i

Using the complete PH specification yields

11  = exp(-exp(X $$ + (( ) [29]i i

where

 t i
((  = log( II h (s) ds )i 0

 t [30]i-1

The contribution to log likelihood made by the n-th observation, which fails

or is censored in the k -th interval, isn

kn
 £ ( $$, (() = ln(1 - 11 (X , $$, (())*(1-d ) + '' ln( 11 (X , $$, (())n k n n j n

     j=1 [31]

An alternative way of writing the contribution to log likelihood for 

observation n that fails in the i-th interval is

    ((  - X $$i

 £ ( $$, (() = ln II      f( gg) d ggn
    ((  - X $$ [32]i-1

where f( g) is the density function of an extreme value random variable under

the PH specification.  If observation  n is censored,  replace the upper limit

of the integral with + 4.  Equation [32] shows that the discrete PH structure

is closely related to standard dichotomous choice models; indeed, the discrete

duration density is like an ordered logit under the PH model where F( g) is the

extreme value distribution. Reinterpreting the data in the dichotomous choice

framework, each individual contributes k  pseudo-observations to then

likelihood function.  The first k -1 pseudo observations for an individualn

consist of a piece of the survivor function; the last piece is (1- 1 ), whichk

appears only if the observation is known to have failed.  Hypotheses about

specific forms of $ and ( are the basis for specification tests, which are
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discussed below.

Differences between the continuous and discrete versions of the proportional

hazards model are subtle.  In the continuous case the baseline hazard is

treated as a nuisance function, and the ordered failure (and censoring) ranks

are used to condition the baseline hazard out of the estimation procedure. In

the discrete case the baseline hazard is treated as constant within intervals,

and a parameter for each interval is estimated.  Thus the scale of the failure

time data is explicitly estimated in the discrete PH model.  Because only a

finite number of intervals are considered the discrete version of the PH model

potentially can be misspecified due to aggregation bias (Bergström and Edin,

1992; Sueyoshi, 1992). 

3.2.b Accelerated Failure Time models.

An alternative family of models with restrictions of strength similar to the

proportional hazard specification is the class of Accelerated Failure Time

models. In this case the hazard function is

88(t **X) = 88 (t NN(X, $$)) NN(X, $$) . [33]0

Note that in contrast with the PH model, the effect of regressors in

accelerated failure time models is to rescale time.  That is, here a covariate

accelerates (or decelerates) the time to failure while in the proportional

hazard model a covariate changes the hazard rate. For the case where N( C) =

exp(X $) the AFT model also has a linear models interpretation:

-ln t = X $$ + v,   v ~ F(v) . [34]

The distribution function, F(v), is continuous, but is otherwise
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unconstrained.  Thus, AFT and PH models make assumptions about different

features of duration data. PH models allow some general transform of duration

time to be linearly related to X $, but completely specifies the distribution

of the error term.  AFT models, on the other hand, completely restrict the

transform of duration time, but allow arbitrary structure on the error term. 

It can be shown that for the link function N(X, $) = exp(X $) the weibull

(including the exponential as a subcase) specification is the only member of

both the proportional hazard and accelerated failure time families. 

Parametric implementation of an AFT model requires a choice, up to a finite

vector of parameters, of the distribution of v, F(v).  Semiparametric

implementation requires that F be estimated along with $.  If censoring were

not present the semiparametric tool of choice would be least squares, with the

distribution of the residuals, F $ ( g), being obtained as the empiricaln

distribution function.  If censoring is present, the regression structure of

ln(t) suggests that censored regression methods be used.  Many estimators have

been proposed (see Horowitz and Neumann (1988, 1989a,b) for discussion) but

three methods have attained significant usage -- quantile estimators (Powell,

1986a), symmetrically censored least squares (Powell, 1986b), and

semiparametric M estimators (Horowitz, 1986, 1988). Horowitz and Neumann

(1988, 1989a) survey their application.  

Ridder (1990) has proposed a model --the Generalized Accelerated Failure Time 

(GAFT) -- that nests both AFT and PH specifications.  Indeed, the GAFT model

has the linear structure of the PH model in equation [27] but the error term

is not required to be extreme value.  Horowitz (1992) provides %N consistent,

asymptotically normal estimators of G and F, given a consistent estimate of $

for the case where there is no censoring.  As yet the GAFT approach cannot

handle censored data and so it has seen limited use in duration models.
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Because economic theories about durations typically have implications about

the behavior of the hazard rate,  an estimate of the hazard function is

usually desired. This requires extra effort in the semiparametric case.  Both

PH and AFT models specifications deliver a consistent estimate of the

integrated hazard function at the observed failure times.  To obtain the

hazard function the log survivor function must be differentiated. Typically

the result is very noisy, and some smoothing procedure must be applied. 

Watson and Ledbetter [1964] examine this problem; recent descriptions of

kernel estimation of the hazard function are given in Silverman [1986], and

Scott [1992].  Ramlau-Hansen [1983] shows, in the no covariate case, that

kernel estimates of the hazard function are normally distributed as the sample

size gets large.   Wells [1990] extends this approach to include covariates. 

Thus in principle it is possible to test whether the hazard function is

increasing, decreasing, or constant over an interval.  

3.2.c Diagnostic tests

Semiparametric models are popular because they provide protection against some

forms of model misspecification.  Thus the exponential model and the weibull

model, to which it was compared in table 2 using Kennan's strike data, are

both members of the PH family; consequently, estimates of the effect of

covariates obtained from Cox's model should be the same, up to a scalar, as

those obtained from the parametric specification.   Of course, one never14

knows if the data generating process really has proportional hazards, or 

accelerated failure times, so there is a need for formal methods of testing. 

Methods for testing specifications are relatively thoroughly worked out for

the proportional hazard model, in both discrete and continuous forms, but less

so for censored regression models or for accelerated failure time models.
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The workhorse for developing test statistics has been the integrated hazard

function, g   =  I  h(s,x, $)ds.  It is well known that g  is distributedt 0 t
t

extreme value with mean 1, and this fact allows tests based on the integrated

hazard, or on functions of it. By analogy with residual testing in linear

models, it is convenient to work with centered versions of the integrated

hazard.  Lancaster (1985, 1990), follwoing Cox and Snell [1968] calls 1 - g  at

generalized error, and defines generalized residuals as the errors with

maximum likelihood estimates of unknown parameters inserted, i.e., e  =  It 0
t

h(s,X,b)ds, where b is the mle for $. On the null hypothesis that the model is

correctly specified a plot of the logarithm of the sample survivor function

against e   should produce a straight line with a 45 E slope.  For Cox'st

proportional hazard model this is Kay's [1977] graphical test.  

Graphical tests are useful for detecting departures from a specified model,

but a formal test is often needed.  One approach is the two-sample test of

Breslow, Elder, and Berger [1984], Wei [1984], and Gill and Schumacher [1987]. 

Consider a binary explanatory variable, Z , which takes on the value 1 if the2i

i-th individual has characteristic A, and zero otherwise.  The link function

N(X $) = exp(Z $  + Z $ ) forms the basis for the test: reject the nulli 1i 1 2i 2

hypothesis that there is one population (H : $   / 0) if $ / %Var( $ ) > t ,0 2 2 2 N"

where t  is a predetermined critical value of the student t-distribution. TheN"

extension to a k-sample test is immediate.

Two-sample tests are of limited use in econometric applications where

covariates typically are continuous.  One approach to testing the PH

assumption with continuous covariates involves introducing quadratic or higher

order terms in X into the link function.  This is simply the RESET procedure,

which in this context tests the adequacy of the link function specification. 

An alternative approach tests the proportionality hypothesis by testing the

constancy of $ in [24].  Schoenfeld [1980] proposes partitioning the time axis



HANDBOOK OF APPLIED ECONOMETRICS
Chapter 4

32

into L  sets, and the regressor space into L  sets, and testing failure rates1 2

within the L  x L  cells. If the PH hypothesis does not hold, then over a1 2

certain interval of time the hazard will be greater than in other periods. The

test that Schoenfeld proposes is a P  test with L xL  degrees of freedom. 2
1 2

Moreau et al. [1985] consider a slightly restricted version of the Schoenfeld

test.  They discretize the time interval into r units ((0,b ),(b ,b )...(b , 4))1 1 2 r

and define the hazard as:

h(t **X(t))  =  h (t)exp(( $$+(( )X(t)),  b  ## t < b , [35]0 j j-1 j

where $ and (  = ( ( , ( , ..., ( ) are (px1) dimensional vectors. The Moreau etj 1j 2j pj

al. test is a score test of the null hypothesis that (  = 0, j= 2,..,p. Itsj

asymptotic distribution is P  with (r-1)*p degrees of freedom.  Compared to2

the Schoenfeld test there is some economy in that only one degree of freedom

is used up for each of the p covariates, but the partition of T must be

chosen.  As is well known, the outcomes of the test can be sensitive to the

choice of the partition, but  methods for making choices that assure high

power have not been developed.

Horowitz and Neumann [1992] present a method of moments test that can be used

with continuous covariates and which does not require partitioning of the time

and/or covariate axis.  The test exploits the integrated hazard (U =

I h (s)exp( $X)ds) function for the proportional hazard model, which is0 0
t

distributed as a (possibly censored) unit exponential variate under the null

hypothesis that the model is correctly specified.  A possibly vector-valued

function, W(U), is chosen such that E W(U,X, *) = 0 when the model is true, andP

E W(U,X, *) � 0 when U does not have a unit exponential distribution.P

Expectations are taken over the joint distribution, P,  of U, X, and *, the

censoring variable.  
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Tests of discrete proportional hazard models, because they do not have to rely

on dependencies created by non-parametric estimation of the baseline hazard

function, are the standard Wald, LM, and LR tests.  For example, if the

intervals on which the discrete PH model is defined are the same length, then

a test of the exponential model for durations can be constructed by noting

that 

((  = ln h   +  ln(t  - t ). [36]i 0 i i-1

Thus a test of the exponential model can be constructed as a test of the

restriction (  = (  ... = ( .  A test of the proportionality hypothesis itself1 2 K

can be made in the discrete case.  The specification given in [29] reveals

that one restriction of the PH model is that the link function, exp(X $) have

constant $'s.  Assuming that there is enough variation in the X's, the

specification in [29] can be relaxed to

11  = exp(-exp(X $$  + (( ) , i = 1,..,K [37]i i i

and a test  of $  = $, i = 1,..K can be implemented using LR, LM, or Waldi

tests (Kiefer (1990); Han and Hausman (1990); Sueyoshi, (1991); McCall

(1994)).

3.3 Semiparametric Estimation of Kennan's Strike data

To illustrate these semiparametric techniques I apply them to Kennan's strike

data, which was described earlier.  The estimates are shown in table 4. The

second column contains estimates based on the maximizing the partial

likelihood function suggested by Cox.  The third column contains estimates

based on maximizing the conditional likelihood function for discrete data, the

sum over the 566 observations of equation [31].  To implement the discrete
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Table 4

Semiparametric Estimates
of Kennan's Strike Duration Data

S))))))))))))))))))))))))))))))))))))))

Model
Variable Pro. Haz. Pro. Haz. Quantile SGLS
       (Cont.) (Discrete) ( 2=.3)          
S))))))))))))))))))))))))))))))))))))))

INDP  3.2453  3.2224  2.1521  1.9054
(1.08) (0.93)  (1.76) (1.33)

FEB -0.5671 -0.5626 -0.6123 -0.6453
(0.266) (3.89)  (0.37) (0.28)

Intercept    --  --   -2.6094
               (0.09)

model I divided the time axis into 10 intervals - (0,5], (6-10], (10-15], (15-

20], (20-25], (25-30], (30-35], (35-40], (40-45], (45 - 4) - the first 9 of

which are of equal length.  The fourth and fifth columns contain censored

regression estimates of ln (duration) models, which are semiparametric

alternatives to the proportional hazard specification.  The column labelled

"Quantile" contains parameter estimates obtained using Powell's [1986]

censored regression quantile method for the .3 quantile, while the column

labelled "SGLS" reports estimates based on Horowitz's [1986,1988]

semiparametric generalized least square approach, using the .3 Quantile

estimates as a starting point.  Note that because the coefficients in the

Proportional hazard model are identified only up to scale, they are not

directly comparable to the censored regression coefficients.  Only for the

exponential distribution are the coefficients directly comparable.  

Both versions of the proportional hazard model are in agreement that the level

of industrial production relative to its trend (INDP) significantly affects
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strike duration, but the existence of a February (FEB) effect is not clearly

evident in the discrete PH model.  In contrast, estimates of the effect of

INDP using either AFT (quantile or SGLS) model would not indicate a

statistically significant role for industrial production.  The quantile

estimate has an asymptotic t-value of 1.22, while the t-statistic for the SGLS

estimate is 1.43.  Thus the  inferences that one would draw will depend upon

whether the proportional hazard or accelerated failure time model is correct.

As discussed in section 3.2a above, it is possible to test features of the

proportional hazards assumption.   To get a visual impression of the adequacy15

of the PH assumption I used Kay's graphical test based on the estimates of the

continuous model in column (2) of table 4.  Specifically, denoting by S the ^

conditional survivor function, define LLS / log[-log[S]], and let ESF be the^

Kaplan-Meier estimate of the survivor function of LLS.  If the proportional

hazard model is correct the plot of log[-log[ESF]] against LLS will be

approximately a 45 E line.  Figure 3 shows the plot obtained from the strike

data with a 45 E line superimposed.  In all graphical tests one is left with

the question of how close is close, but certainly nothing in figure 3 would

indicate a significant departure from proportional hazards.
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Figure 3

To formally test the proportional hazards hypothesis with continuous

covariates two tests are available.  For the continuous model the Horowitz-

Neumann test calculates the moments of W(U,X, *)= (1+ *)exp(-U) -1, where U is

the empirical integrated hazard function computed from the coefficients

estimated by Cox's partial likelihood method.  Under the null hypothesis that

the Proportional Hazard model is correct W has expected value 0 and is

distributed asymptotically normal.  Computing the test statistic yields a

value of 0.001. If the proportional hazards model is correct the test

statistic is distributed as P  with 1 degree of freedom, so this test accepts2

the proportional hazard model (p=.92).

For the discrete PH model the test of the proportionality assumption is a test

for constancy of the elements of $.  As the time axis has been partitioned
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into r bins to implement the discrete model, one could potentially estimate

(r-1) coefficient vectors, each of dimension p.  For the strike data p=2 and

r=10, so a full test would involve testing 18 restrictions.  This is unlikely

to have much power.  Instead of testing all possible variations in $, I

considered the case where $ = $  for t g (0,23], and $ = $  for t g(23, 4]. The1 2

test is implemented as an LR test.  The value of the maximized log likelihood

function is -1100.3057. Therefore the test statistic -2* )LogL = -2*(-1100.3057

+1100.4735)= 0.33563.  If the proportional hazard model is correct this

statistic is distributed as P  with 2 degrees of freedom, so this test accepts2

the proportional hazard model also (p=.85).

Equivalent tests of the accelerated failure time model in the presence of

censoring have not yet appeared. In particular there is not, to my knowledge,

a test that compares proportional versus accelerated hazards.  However, it is

likely that the GAFT model (Ridder [1990]; Horowitz [1992]) will be able to

distinguish between the non-parametrically estimated function G(t), given in

[27], and the deterministic function ln(t).

Of course it is possible that neither the proportional hazards specification

nor the accelerated failure specification is correct.  Each limits the

interaction of duration time and covariates in forming the hazard function in

a specific way, and a particular problem may require a more flexible

interaction between covariates and duration.  For example, using British data

Atkinson et al. [1984] and Narendranathan and Stewart [1993] find that

unemployment benefits have different effects on the hazard from unemployment

as the spell lengthens.  Mortensen [1977] presents a search theoretic argument

of why this should be so based on a maximum benefit receipt period. In cases

such as this, hazard rate specifications like ln h(t *X) = $ X + $ I(t < t ) +0 1 *

$  X*I(t $t ) are sensible specifications, where I(X) is the indicator function2 *

taking the value 1 if event X is true and zero otherwise, and t  is an *
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exogenously determined change point of the process.  Other forms that have

"bathtub"-like shapes or that change at discrete points are, of course,

possible.  In such cases the regression approach described above is likely to

have little utility.

3.4 Time Varying Covariates.

Our development so far has treated X, the set of covariates, as fixed.  Yet it

frequently is the case that elements of X will change over the length of a

spell.  For example, unemployment insurance payments typically are made at a

certain level for some period of time, and subsequently are paid at a

different, usually lower, level thereafter.  Similarly, the probability of

discharge in an industrial setting typically varies with a worker's

disciplinary history, which itself may change over time.  Finally, in the

context of job matching models, (e.g., Jovanovic, [1979, 1984]), the duration

of a job depends upon the wage received, which typically is modelled as

stochastic.

Time dependent covariates can be put into two classifications: external and

internal.  External  covariates are the outcome of a stochastic process whose

marginal distribution does not involve the parameters of the duration model. 

Fixed covariates are one example of an external covariate, where the

stochastic process is degenerate; predetermined processes such as an age

indicator, which changes at a fixed, predetermined time, are another example. 

Local labor market conditions, as represented by the monthly unemployment

rate, would be a typical example of a process which is stochastic, external to

individual unemployment durations, but not defined in advance.  Internal

covariates are the output of a stochastic process that is generated by the

individual under study and is observed as long as the duration has not ended

(or been censored).   Lancaster [1990] notes that all external covariates are
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exogenous, in the sense of Engle, Hendry, and Richard [1983], and thus the

conditionality principle would suggest conditioning on their entire observed

path. Thus, in a study of the effect of UI payments on the duration of

unemployment it would make sense to consider the effect of the level of next

period's UI payments on today's hazard, or to introduce a stochastic variable

like "time to subsequent benefit exhaustion" (Meyer, 1990) into today's hazard

when the covariate is exogenous.  For internal covariates such conditioning is

not possible, and depending upon the definition of the covariate, proper

treatment may require modelling the joint probability of T and X(t). 

Lancaster [1990] provides a useful discussion of this issue.

Assuming that the time varying covariate affects the hazard only through its

current value the integrated conditional hazard may be written as

77(t **X(t))  =  II  h(s,x(s), $$) ds [38]0
t

where X(t) is the history of X up to time t.  The density of a completed spell

is h(t,x(t)) exp(- 7(t *X(t)), so the only difficulty in implementation is the

integration in [38].  If X changes infrequently the integral can be simplified

into a sum of a few terms; in other cases numerical integration may be

required.

Note that identification of the effects of a time varying covariate from

duration dependence is not trivial.  As an example, suppose that the divorce

rate (the hazard from marriage) is affected by the aggregate unemployment

rate, h (t *X, U(t)) = h (t)exp(X $ + U(t) ().  By construction this model is aM o

proportional hazard model, but Cox's partial likelihood methods will not

identify (.  Because the current unemployment rate affects all persons married

at time t in the same manner, its effect cannot be distinguished from duration

dependence in h (t).  In general, substantial cross-individual variation ino
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the paths of time varying covariates will be needed to reliably identify their

effects.

3.5 Unmeasured Heterogeneity.

Covariates are incorporated into the hazard function control for measured

heterogeneity across individuals, but it would be a rare case where a

researcher had data that measured all relevant variables, both T and X,

without error.  If data are incomplete in this fashion then, much as in the

linear case, standard methods of estimation may lead to biased and

inconsistent estimates of parameters.  To illustrate the issue write the

conditional hazard as h(t *X, <) where X is the set of measured, time-invariant

covariates, and < is a scalar representing unmeasured heterogeneity.   Let <
16

have distribution function G( <*X).  The observations that we see on (t,X) are

draws from the unconditional distribution of t, given X, p : m

p (t **X) = II p(t **X, <<) dG( <<**X) .  [39]m

= II {h(t **X, <<) exp(- II  h(s **X, <<) ds)} dG( <<**X)0
t

The unconditional distribution is then the average, taken with respect to the

mixing distribution, G. The survivor function is similarly defined as

S (t **X) = II exp(- II  h(s **X, <<) ds)} dG( <<**X) , [40]m 0
t

and the mixture hazard function can be found by differentiating minus the

logarithm of [40] to get

II h(t **X, <<)S(t **X) dG( <<**X)
h (t **X) =                           [41]m

II S(t **X, <<) dG( <<**X)
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Figure 4

Thus the mixture hazard function is a weighted average of the conditional

hazard functions, where the weight function is

 S(t **X) dG( <<**X)w ( <<**X) =                           [42]t

II S(t **X, <<) dG( <<**X)

The averaging of < is with respect to the distribution of v over the survivors

at date t.  Note that since large < implies a large hazard, the mixture hazard

eventually looks like the conditional hazard evaluated at sup <.  It can be

shown (Heckman and Singer, (1984a), Proposition 1) that the slope of h (t *X)m

is always less than the slope of h(t *X, <).
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Figure 4 illustrates this with a mixture of exponential hazard rates.  In the

figure there are two types - h  = <  = .1 and h  = <  = .05 - with an initial1 1 2 2

distribution  G( < ) = .5.  The mixture hazard rate, h , starts halfway between1 m

the two conditional hazards and asymptotes to the lowest value.   As the

example shows, uncontrolled heterogeneity creates the appearance of duration

dependence.  Consequently, in cases where distinguishing duration dependence

is important, methods must be used to control for unmeasured heterogeneity.

One approach to the problem of unmeasured heterogeneity is to assume a

specific form for the mixing distribution, G(v *X, 0), where G is known up to a

finite number of parameters, 0.  The mixture log likelihood function for N

realizations of t and X is

��( $$, 00)   =  ''  d (log(p (t **X , $$, 00)) + (1-d )(log( S (t **X , $$, 00) [43]i=1 i m i i i m i i
N

and this function can be maximized using standard methods.

An example, due to Lancaster (1990), illustrates this approach.  Assume that

the heterogeneity acts multiplicatively on the hazard, i.e., h(t *X, <) =

<*h(t *X).  Suppose also that the conditional distribution of durations is

exponential with parameter 8, that is, p(t *X, <) = exp(- <8t ).  Let dG( <*X) bei i

a unit mean Gamma density.   The density function of the mixture is17

p (t **X) = II  v*exp(-v* 88*t ) v  exp(- $$v)dv/ ''( $$)m i 0 i
44 $$-1

                             = {( 8$8$)/( 88t  + $$)} [44]i
1+$$
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where  the assumption of unit mean ( "=$) has been used to arrive at [44].  The

log likelihood for a sample of N independent observations is

��( 88, $$) = (1+ $$) ''  {ln( 8$8$) - ln( 88t  + $$)} . [45]i=1 i
N

Maximization of � with respect to 8 and $ is straightforward, although

solutions in the natural parameter space { 0 < $ } may fail to exist. This

suggests that a mixture model is inappropriate.  While some theoretical models

deliver a specification of p(t *X, <) they do not, to my knowledge, ever deliver

a complete specification of the distribution of heterogeneity, observed or

unobserved. Consequently, the choice of a mixing distribution such as the

gamma in [44] is usually made on other grounds, such as computational ease.

Heckman and Singer [1984a,b] have strongly criticized this approach, arguing

that it over-parameterizes the model, and that a faulty choice of H leads to

inconsistent estimates of the parameters of interest.  They argue instead for

the use of a non-parametric estimate of the mixing distribution based on the

results of Lindsay [1983a, 1983b] and Laird [1978].  The maximum likelihood

estimator of the mixing distribution is a discrete distribution with the

number of points of support, k, being no greater than N, the sample size

[Heckman and Singer 1984a, proposition 9].  In applications  N is typically

larger than 300 while k frequently turns out to be small, say 3 or 4.   Why

this is so is not well understood.  

To see what the nonparametric approach achieves, suppose the number of points

of support, k, and their location, < , i=1,..,k, are known. Dropping thei

explicit conditioning on X for notational convenience, notice that the

survivor function S (t) is observed at N $ k distinct points and consequentlym

that the probability mass functions, g( < ) can be solved for in terms of thei

assumed conditional survivor functions and the known support points as in



HANDBOOK OF APPLIED ECONOMETRICS
Chapter 4

      Hu and Sickles [1994] two additional estimators for the mixing18

distribution, essentially adding smoothing out the discrete estimator of
Heckman-Singer.  The asymptotic distribution of these estimators is also
unknown. Heckman [1990] provides a method of moments estimator which has the
same features.

44

S (t) =  ''  exp(- II  h(s **<< ) ds)} g( << ).  [46]m i=1 0 i i
k t

In general [46] is a set of N equations in the k unknowns, g( < ).  Lindsayi

[1983a] discusses the issue of the existence of solutions for g( < ) and how toi

find the support points . 18

The non-parametric mixing approach has not seen much use in applied

econometrics for several reasons.  First, it is computationaly demanding and

multiple local maxima commonly appear.  Second, no asymptotic distribution

theory for the estimator has been produced. Finally, there is the belief, and

some evidence, that a more flexible parameterization of the conditional hazard

function coupled with a flexible parametric specification of the mixing

distribution will be sufficient to avoid substantial bias in estimating the

structural parameters of interest.  The monte carlo evidence in Sueyoshi

[1991], Han and Hausman [1990], Ridder [1986] and Ridder and Verbakkel [1983]

supports this interpretation, although no general theorem explaining the

mechanics has yet been produced.  While the point that flexible modelling of

the conditional hazard function may avoid, or at least lessen, the need for

the non-parametric maximum likelihood approach in reduced form models,

structural models of the sort that arise in search models, which were the

original target of Heckman and Singer [1984a], do not benefit from this

because the theory tightly predicts the form of the conditional hazard

function.  In these cases, if heterogeneity is an important concern non-

parametric estimation of the mixing density may be needed.

Treatment of unobserved heterogeneity becomes more interesting with data on

multiple spells.  Chamberlain [1985] noted that common factors canceled from
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the proportional hazard model and proposed eliminating unmeasured

heterogeneity by conditioning on the common factors.  As an example, suppose

that each individual in the sample has exactly two spells of unemployment

whose hazards are given by

h (t **X , << )  =   88 (t j)exp(X $$) <<   , j = 1,2; i = 1,...,N . [47]ij ij ij i 0 i ij i

The within-person partial likelihood for the longer of the two spell-lengths

is

L  =  (h  h )/(h  + h )i i1 i2 i1 i2
d 1-d

= exp(X $$)  exp(X )  i1 i2
d 1-d

                                     [48]
    exp(X $$) + exp(X $$)i1 i2

where d = 1 if spell 1 was the longer spell.  Note that both 8  and <  cancel0 i

out in [47].  The proposed partial likelihood function is 

                  N
L( $$)  =   (( L   [49]i

                i=1

Of course for $ to be estimable there must be within-person variation in X. 

Thus the practical issues are the same as in linear models: eliminating fixed

effects may generate a selection bias because )X  = 0 for some individuals. i

Note that although we have used the index i to refer to persons, it may well

be that the common effects are due to some other grouping variable, for

example family, or industry.  Little research is available about conditioning

on groupings other than person-specific conditioning.
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4. Search Theory and Duration Models .

Duration models have played an important role in several areas of economics,

including the analysis of strike lengths (Lancaster, 1972; Kennan (1985),

Schnell and Gramm (1987)), timing and spacing of births (Newman and McCullough

(1984); Wolpin (1984)), and optimal replacement or renewal policies (Rust,

(1987); Pakes, (1986)).  The largest application has been in the area of

search economics applied to the labor market.  Indeed, Devine and Kiefer

[1991] survey over 600 empirical studies dealing with labor market search,

which indicates the scope of application.

My goal in this chapter is not to be encyclopedic; instead, I will present a

stylized development of the search ideas and illustrate how they have been

used in and developed by duration models.  I start with the simple search

model, the case of searching without recall for a job that will last forever. 

This model has been a workhorse in applications using single spell data. 

While the model is very simple, the insights gained from it translate easily

into more complicated models with multiple, endogenously chosen labor market

states, possibly allowing for duration dependence in durations and in

transition probabilities.  A central feature in this literature has been the

delicate interplay between theory and econometric practice.  Unlike other

areas, in search applications the stochastic element that drives the model

plays an integral part in the theory and the econometrics rather than being

just tacked on as a residual. But even when great efforts have been made to

interrelate the structure and the stochastic specification some compromises in

modeling must be made if only for computational reasons. 



HANDBOOK OF APPLIED ECONOMETRICS
Chapter 4

47

4.1 Search Theory

In the simplest version of the search model individuals are modeled as

infinite-lived, with discount rate r, who shop for jobs that pay wages = w,

where w is a draw from a wage offer distribution with cumulative distribution

function F[w].  Job availability matters in the sense that the offer arrival

rate, 8, is less than one.  Once a job is accepted employment lasts forever. 

While searching, individuals receive a benefit of b per period. The goal of

the individual is to maximize wealth, defined as the present value of the sum

of future earnings and payments received while searching.  As Mortensen [1986]

shows, under these circumstances a reservation wage policy is optimal and

exists.  A reservation wage policy is one where the decision is : accept a job

paying w iff w $ w ; otherwise continue to search. The quantity w  is calledr r

the reservation wage and in the simple case under consideration it is the

solution to

                         44
w   = b  +  ( 88/r)  II  (w - w ) dF(w) , [50]r r

 w r

an expression that appears in many guises in the search literature. In this

notation the instantaneous probability of a job offer arriving is 8, and since

search is assumed to be random, the probability of an acceptable job offer

arriving, A, is the product of the arrival rate and the likelihood that it is

acceptable, 

 AA =  88 (1-F[w ]) .  [51]r

The simplifying assumptions used in the theory --stationary wage distribution,

constant arrival rate, infinite life --  deliver a strong result.  Search

durations are exponentially distributed with intensity parameter A, i.e., 

t ~ A exp(- A t).  
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The distribution of accepted wages is the truncated part of the wage offer

distribution, 

g(w) = f(w) [52]                     
  1-F[w ] r

If both search duration and wages are observed the joint distribution of

duration and wage is

g(w,t) = 88 exp(- 88(1-F[w ]t)f(w)I(w $$w ) [53]r r

where I(X) is the indicator that the event X occurs.  The inclusion of I(w $w )r

in [53] is essential for obtaining maximum likelihood estimates of w r

(Christensen and Kiefer (1990), Flinn and Heckman (1982)); omission of the

indicator function results in a likelihood function that is monotone in w . r

The assumptions used to generate a constant reservation wage model are strong

and some have felt the need for relaxing them (Flinn and Heckman, 1982).  It

is not obvious how best to do so.  One possibility could be that arrival rates

change as spell lengths increase, i.e., 8   = 8 , perhaps because of a stigmat 0
- Dt

effect.  Alternatively, the benefit received while searching, b, might change

due to Unemployment Insurance provisions, which will induce a changing

reservation wage (Mortensen, (1977)).  The assumption of a finite life also

will eliminate a constant reservation wage (Gronau (1971)), but this is an

aging effect, not a duration effect, and it seems hardly appropriate to

introduce a finite lifespan of about 80 years as the explanation of a

declining reservation wage among youths whose unemployment durations last on

average 1 to 3 months.  The point is that there are many ways to generate a

non-constant reservation wage, although some might be more appropriate.  In

any event, the survivor function for the duration data is, in the case of a

changing reservation wage,
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S(t) = 1-G(t) =  exp(- II  AA(s) ds). [54]0
t

with the density of duration times given by

g(t) = AA(s)exp(- II  AA(s) ds).   [55]0
t

The joint density of durations and accepted wages, constructed in a manner

similar to [53], is 

g (w,t) = 88 exp(- II 88 (1-F [w ]ds)f (w)I(w $$w ) [56]t t 0 s s s t t
t r r

Econometric models which analyze only duration data use [55] with a flexible

functional form for A(s); this is called the reduced form approach.  In

contrast, several authors work jointly with accepted wages and durations and

attempt to identify 8, F[w], and w ; this approach is called structural.  r

The central feature of the search model is the reservation wage.  In theory it

is chosen so that the marginal gain to an additional search is equated to the

marginal cost of search.  Unfortunately, reservation wages are not usually

observable.  The reduced form approach, which has been the dominant approach

for measuring public policy effects (see Meyer (1990); Anderson and Meyer

(1993,1994)), does not require information about the behavior of reservation

wages for implementation.  The structural approach does, and its

implementation requires a choice to: (i) work with reported answers to a

question about lowest acceptable wage; (ii) adopt some approximation to the

reservation wage policy in terms of observable; or (iii) use an exact (or even

approximate) solution to an approximation of the value function.  Each

approach has some merit, and some costs.  I discuss them in turn, starting

first with the evidence on measured reservation wages.



HANDBOOK OF APPLIED ECONOMETRICS
Chapter 4

      Search theory is commonly dated in economics to start with Stigler's19

pioneering articles (Stigler, (1961; 1962)).  Kasper's 1967 article is drawn
from his 1963 unpublished Minnesota Ph.D. thesis, both of whose inspiration is
Reder's published 1947 dissertation.

      Kasper (1967), p.167.20

50

One of the more enduring issues in labor market policy is the nature of the

adjustments that unemployed workers make.  In particular, it is often argued

that flexibility in reservation wages, in particular that they should fall

with search duration, would hasten re-employment.  In the language of duration

models this is equivalent to positive duration dependence, the measurement of

which I noted earlier is quite difficult.  An early, pre-search theory, study

by Kasper (1967)  examines the correlation of changes in reservation wages19

with unemployment duration.  It is worth revisiting this early study to get a

feel for the magnitudes involved.

!!!

Kasper used a sample of 3,000 workers who applied for Temporary Extended

Unemployment Compensation in Minnesota during the period April, 1961 to

September, 1961.  The average duration of unemployment to date (i.e., these

were interrupted spells) was 7.5 months; some spells were for over 2 years. 20

Included in the data were answers to the questions "What rate of pay did you

receive from your last employer? (W )" and "What wage ... are you [currently]0

seeking? (W )".  Kasper constructed the percentage change of asking wage to1

previous wages -- Y = (W -W )/W  and fit the regression Y = $  + $  UDUR + g,0 1 0 0 1

where UDUR is the duration of unemployment, measured in months.  He obtained

Y = -0.808   +   0.357 UDUR     r = .068 [57]^

                (0.857)     (0.099 )

From this he concluded that "...(1) the average asking wage of the unemployed

is significantly less  than their former wage, [and] (2) the average asking

wage of the unemployed significantly declines  over the duration of

unemployment ...(emphasis in the original)" (Kasper (1967), p.165-6.)  There
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are, of course, reasons to believe that this group of workers would have

relatively high reservation wages, and that observed changes in their

reservation wages would be small; after all, they had been unemployed for an

average of 7.5 months at the time of the survey, so the sample is a highly

selected one relative to the pool of all workers who were unemployed at this

time.  But even if we ignore the sample selection issue, there are two greater

difficulties that make it difficult to conclude that reservation wages

actually declined.   First, the relation shown in [57] is completely21

consistent with a constant reservation wage but heterogenous searchers.  In

the case where two, otherwise identical, workers face wage offer distributions

that differ in their mean values, so that µ  > µ ,  worker 2 will set a lower1 2

reservation wage than worker 1 and, as Kiefer and Neumann [1979] demonstrate,

worker 2 also will have a longer duration of search.  In this case if the

reservation wage was observable a regression of it, or a monotone transform of

it like [57], on completed spell lengths would produce a negative relation,

although reservation wages were unchanging. This is just a particular example

of the general difficulty of distinguishing duration dependence (changing

reservation wages) from heterogeneity (differences in the cost of search), as

Heckman has repeatedly argued. 22

The second difficulty is the magnitude of the effect.  The term significantly

declines must refer to the implied t-value of 3.6 of the coefficient of UDUR,

and thus refers to statistical significance.  What is amazing is that the

effect is so small. An entire year of unemployment would, for this sample,

lead to a reduction in asking wages 4%, an amount that seems quite small when

compared to the 25% decline in wages experienced by workers who lost jobs due
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to plant closings around this time.  In short, the data of this study, if they

were to be believed relevant for the entire populace, would seem rather

supportive of the constant reservation wage model.

More recent evidence on reservation wages is reported by Feldstein and Poterba

(1984).  They use a special study of job search methods of the unemployed

contained in the May 1976 Current Population Survey of the U.S.  A total of

4,668 persons were classified as unemployed, and 3,238 completed a set of

questions dealing with search behavior.  One of the questions asked was "What

is the lowest wage or salary you would accept (before deductions) for this

type of work?"  Interpreting this as an individual's reservation wage

Feldstein and Poterba [1984, Table 1, p.148] provide a summary of how the

ratio of the reservation wage to previous earnings varies by duration of

unemployment.  Figure 6 shows the relation between the ratio of reservation

wages and previous earnings to unemployment duration for the Feldstein -

Poterba data and for the Kasper data as well. 23
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Figure 5

The relation between reservation wages and elapsed duration is remarkably

similar in both studies.  After a year of unemployment reservation wages had

declined to 98% of previous earnings in Kasper's data, and to 97% of previous

earnings in Feldstein-Poterba's data, levels that would not suggest much of a

change in reservation wages.  However, as figure 6 shows, the relation is

steeper than the levels at 52 weeks of unemployment would indicate because so

many individuals state as reservation wages a number that exceeds, often far

exceeds, their previous level of earnings.  For the U.S. stock of unemployed

workers in May, 1976  38% expressed a reservation wage that exceeded previous 

earnings and 27% expressed a reservation wage exactly equal to their previous

wage. Perhaps even more curious is that 28% reported a reservation wage that

was more than 110% of previous earnings.  Conceivably workers on layoff might
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correctly report their reservation wage to equal previous earnings, and some

workers might quit a job because it paid too lowly.  As Feldstein and Poterba

point out, for workers who were "job losers", i.e., not on layoff, not a quit

or a labor force re-entrant, the fraction with a reservation wage exceeding

previous earnings was 31%, and the fraction reporting a reservation wage in

excess of 110% of earnings was 24%.  Both numbers are inappreciably different

from the total sample estimates.

It seems then that directly reported reservation wages are not a promising

avenue for subsequent research.  Given the state of the art in questionnaire

design  and interviewing techniques, individuals either can not or will not go

through the decision calculus necessary to supply a meaningful answer about

reservation wages.  Accordingly, one will have to infer reservation wage

patterns from other outcomes of the search process.

4.2 First Generation Search Models.

The motivation behind most early applications of search models was to examine

the impact of public policy such as Unemployment Insurance (UI) on labor

market outcomes.  There are several ways that a program such as UI can alter

search results, and these will vary from program to program.  For example, in

the U.S. the states typically have different settings for the replacement rate

-the ratio of Unemployment benefits to previous earnings- and for the maximum

period for which benefits can be drawn.  It is not clear a priori which policy

lever would have the largest effects, and early research set out to measure

this.  Initial work, of which Burgess and Kingston (1971, 1977), Classen

(1977), and Ehrenberg and Oaxaca (1976) is representative, proceeded to

analyze models like

     t  = X  $$  +  UI  $$   +  ggi i 0 i 1 1i
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Dln(W ) = Z  ((  +  UI  ((   +  gg  [58]i i 0 i 1 2i

where UI is a vector of state-specific, possibly individual specific measures

of the UI program, t  is time spent unemployed, and Dln(w) is the differencei

in logarithms of post- and pre-unemployment wages.  The standard method of

analysis was to perform OLS on [58], possibly with some adjustment for

heteroskedasticity.  Many of the early studies used data from the employment

service, so t  refers to UI-compensated unemployment rather than totali

unemployment.   In addition to the sample selection issue that this raises it24

also occasions problems of censoring.  Administrative records lose track of

individuals when they exhaust their benefits, so the dependent variable in

first part of [58] is censored, while that of the second part is completely

unobserved.  Note that this is in addition to the ordinary force of labor

force withdrawal that is attendant to the job loss process.  In the Burgess

and Kingston data 11% of the Arizona UI claimants exhausted benefits, as did

41% of the recipients in San Francisco.  In the same data, 23% of the

recipients in Arizona report no earnings in the year following unemployment,

as did 41% of those living in San Francisco.  If these were independent

processes (which they are not) somewhere between a 30% to 80% of the sample is

being lost.  

Not all early studies used administrative records as the source of

unemployment spells.  Ehrenberg and Oaxaca (1976) use data from the NLS survey

for 1966-71 to measure durations and wage gains.  This eliminates the

censoring attendant to the use of administrative records in the US but it

brings new problems.  The NLS data, like most data sets, were not set up to

record data by spell length, so only total weeks of unemployment divided by
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number of spells of unemployment can be used as a measure of search duration.

Of course there is some gain in that data sets like the NLS have a richer set

of controls, like age education, and family status that are absent in

administrative data.

These early studies, although beset by technical problems of censoring and

selectivity for which the econometric literature had yet to produce a

treatment, were influential precisely because search ideas were in the air

quite broadly, and many applied economists were looking for methods of dealing

with duration data that were more tightly linked with the underlying economic

theory.  

4.3 Second Generation Studies.

Early studies of search outcomes can be criticized for applying inappropriate

statistical methods to empirical models that were only loosely related to the

economic theory;  the hallmark of the second generation of search studies is

an attention to specifying the stochastic process generating the data and then

carefully developing the empirical model that is fit to the data.  Lancaster

(1979) and Nickell (1979) originally introduced the reduced form approach to

analyzing unemployment durations.  The attention to the data structure is

particularly important.  For example, Lancaster works with a sample of 479

unskilled workers who were found on the unemployment registers at date t, and

interviewed some 5 weeks later.   Had none of these workers found employment

in the 5 week interregnum, the analysis would have been of completely censored

data and could not have been informative. In an earlier incarnation these data

might have been ignored because of their frailties, but Lancaster, and Nickell

using similar data, exploited the hazard function approach to the data and

teased out the inferences that could be made from partially censored duration

data. 
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Lancaster [1979] introduces Cox's (1972) model {summarized in eq. [24] above}

into the econometric literature, although it in fact does not estimate the

general model.  Instead, Lancaster first implements an exponential

specification (h(X) = R (X) R (t)  = exp(X $)), next allows for duration1 2

dependence, R (t) = "t , and finally, pointing out that unobserved2
"-1

heterogeneity can lead to misleading inferences about duration dependence, he

assumes that unobserved heterogeneity, <, affects the hazard multiplicatively,

as in eq. [44], and that it has a Gamma distribution. The paper also points

out that the likelihood function appropriate to the problem will depend upon

how the data were gathered, in particular whether the data were sampled from

the flow into unemployment or from the stock of unemployed.

The pattern of Lancaster's empirical results at this relatively early stage

are interesting because they presage patterns that turn up over and over in 

the following decades. Focusing on the coefficient of the replacement rate

(the ratio of unemployment payments to previous earnings, and on the duration

dependence parameter, Lancaster's findings, shown in Table 5, can be

Table 5

Summary of Lancaster's Duration Model Specifications

Specification Replacement Rate Duration Dependence

Constant Hazard -0.43 1.00
(0.21) --

Weibull Hazard -0.41 0.77 
(0.21) (0.09)

Weibull Hazard with -0.43 0.90 
Gamma Heterogeneity (0.26) (0.22)

Source: Lancaster (1979), Tables 1, 2, and 5. Replacement rate is the log of the replacement
rate; duration dependence is the coefficient, ", from the weibull specification.  Standard
errors are in parentheses. 

summarized as (1) adding regressors to the unemployment duration specification

makes the model fit better, but even the best specification is dominated by

one that allows for duration dependence.  Row 2 of table 5 shows that when the
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duration parameter, ", is not constrained to unity as it is in the exponential

specification, the MLE is in this case significantly less than 1.  Note that

the magnitude of the coefficient on the replacement rate is hardly changed. 

Row 3 of table 5 shows the results when both heterogeneity and duration

dependence are allowed.  As was suggested earlier, it is difficult to separate

these competing explanations, and this difficulty manifests itself as a fat

standard error on " in column (3).  In fact " cannot be distinguished from 1,

nor can the variance of < be distinguished from zero.  Thus the data are

consistent with a pure heterogeneity explanation, a pure duration dependence

explanation, or some mixture.  But with 479 observations Lancaster cannot tell

them apart.  This pattern re-appears in many subsequent studies by a variety

of authors.  But note that, while disentangling duration dependence from

heterogeneity is complicated, the coefficient (and its standard error) of the

replacement rate are hardly affected, a result that was replicated by Nickell

(1979) using British data and in Monte Carlo studies by Sueyoshi (1992) and

Ridder (1986).

Nickell's (1979) approach is similar to Lancaster's, differing in three

respects.  First, and of lesser importance, Nickell uses a discrete time model

as opposed to Lancaster's continuous-time formulation.  Nothing important

hinges on this specification, at least not at this level.  Aggregation

problems brought about by moving from weekly to quarterly, or even annual data

are a different matter ( see Bergstöm and Edin, (1992)), but  these hardly

play a role in this case - both Nickell and Lancaster use data where durations

are measured in weeks. The second difference is that Nickell adjusts for

unobserved heterogeneity using a discrete distribution of heterogeneity rather

than the more tightly paramaterized Gamma form used by Lancaster.  In fact,

Nickell uses dG( <*X) =  <  with probability N, and dG( <*X) =  <  with1 2

probability 1- N, where < < , < , N> are parameters to be estimated.  This1 2

discrete specification of the heterogeneity distribution anticipates the



HANDBOOK OF APPLIED ECONOMETRICS
Chapter 4

59

subsequent development by Heckman and Singer (1984) of the non-parametric

maximum likelihood estimator of the mixing distribution.  Indeed, conditional

on the correct number of points of support they are the same.  Finally,

Nickell allows for time variation in the effect of Unemployment Insurance and

finds that the effect in his data are is confined to the first twenty weeks of

unemployment.  This sort of exploratory work, although it can lead to

overfitting of the data, is very informative for the design of social welfare

policies.

The elegant treatment of duration data by Lancaster and Nickell provided

answers to half of the search economics research program.  Kiefer and Neumann

(1979a,b) provide an answer to the remaining part of the program.  Using a

discrete time model for job offers and treating 8 as fixed at unity (which was

the custom in theoretical search models at that time, cf. Mortensen (1970) and

McCall (1970)), Kiefer and Neumann argued that the log of the joint density of

a completed spell of unemployment, t, and a re-employment wage, w, was:

                   t-1
g(t,w)  =    EE  log{F(w (s))} + log{ f(w) I(w $$ w (t)) } [59]r r

 s=1

where F and f were the cdf and density of the wage offer distribution. Thus,

in the constant reservation wage case the joint density was the product of a

binomial term --the probability of getting t-1 failures followed by 1 success-

- and the conditional density of wages given that the wage offer exceeded the

reservation wage.  Incomplete spells were handled as censored in the same

manner as Lancaster (1979).

To implement the model Kiefer and Neumann assumed that offer wages and

reservation wages could be written as

ln(w )    =  X $$ + gg
O O
i i i

ln(w )    =  Z (( + gg   [60]r r
i i i
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with [ g , g ] distributed N(0, E).  In this formulation w  is regarded as ao r r
i

linear approximation to the solution to equation [50], composed of observable

elements, Z, and unobservable (to the econometrician) elements, g .  Ther

theory underlying equation [50] implies that all elements that affect wage

offers, X, also affect reservation wages.  Hence, X e Z.  Identification

requires that there be some elements in Z that are not in X.

Letting Y  = ln(w ) - ln(w ) = X $ - Z ( + u , where u  = g  - g  ~ N(0, F  + F  -i i i i i i i i i r o
o r o r 2 2

2F ), and y  = Y / F  the econometric problem can be cast, for the case of a2
r,o i i u

constant reservation wage only, in the familiar framework of Heckman's (1976)

two-step selectivity model.  In this case a probit is fit to data on y , which i

yields consistent estimates of (X $ - Z ()/ F .  These estimates are in turn usedu

to construct the inverse Mills ratio, 8  = N(-y )/(1- M(-y )), which is neededi i i

to obtain consistent estimates of the wage equation regression:

E( ln(w )) =  X $$ + DFDF  88  [61]o
o i

where D = ( F  - F )/( F F ).  Computing the uncensored mean as X $ and re-2
o r,o o u i

estimating the probit equation, now called the structural probit, yields an

estimate of F .  Subject to the identification condition this yields estimatesu

of the wage offer and of the reservation wage equation.  

For the non-constant reservation wage case this regression shortcut is not

available and estimation must make use of the full likelihood function.  The

issues are the same, with the addition of a time varying term.  Kiefer and

Neumann (1979b) use the linear specification

ln(w (s)) = Z (( + s ** + gg   [62]r r
i i i

but it is clear that any function of elapsed duration, k(s), could be used
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instead.  Like Lancaster (1979) they find substantial evidence of a declining

reservation wage. In subsequent work (Kiefer and Neumann (1981)) they follow

Lancaster and account for unobserved heterogeneity by specifying a

distribution for it and integrating it out.  Evidence in favor of a declining

reservation wage remains but is substantially muted when heterogeneity is

allowed.  Integrating the heterogeneity out is difficult in this specification

because the optimality constraint must be satisfied for values of the

heterogeneity parameter.  That is, writing the employment condition index as:

Y (s **<<) = (X $$ - Z (( -s ** + <<)/ FF  [63]i i i

it can be seen that not all values of < are consistent with employment

patterns.  High values of < are inconsistent with workers not finding

employment, as are low values of < for those who do become employed. 

Moreover, when working with the joint density of wages and durations it

matters what the source of the unobserved heterogeneity is.  Thus if < affects

only costs of search, or utility while unemployed, then heterogeneity enters

the employment condition only through the reservation wage.  However, if the

heterogeneity enters through the wage offer distribution, then the

heterogeneity must be consistent with both the employment rule and the

observed pattern of wages.  These restrictions make the problem of maximizing

the likelihood function non-standard, and the usual methods of inference about

the parameters $, ( do not apply directly.  Methods for dealing with these

issues are at subject of much current research. (See Christensen and Kiefer,

(1990) for one approach.)

The Kiefer-Neumann approach to structural modelling of the joint distribution

of wages and durations involves using a log-linear approximation to the

solution of equation [50].  An alternative approach, employed by

Narendranathan and Nickell (1985) and Wolpin (1984) is to find exact solutions
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to approximations of the value functions that underlie equation [50].  Wolpin

(1987) goes even further and proposes to calculate equation [50] exactly. 

Given knowledge of (1) the wage distribution F(w *$) up to a finite set of

parameters $, the arrival rate of offers 8, the value of utility while

unemployed, b, and the discount rate, r, one can iterate the contraction

mapping implicit in [50] to solve exactly for w .  Faster methods arer
i

available for the solution of [50] since it can be shown to be a Volterra

equation, for which special solutions are available (Tricomi (1957); Linz

(1985)).   Wolpin (1987) considers the case of a declining reservation wage,

in which case an interrelated series of equations like [50] must be solved. 

Specifically, the reservation wage at time s satisfies

w  = b + (1/(1+r)) w  ,   t < Tr r
s s+1

                                  s-1
w  =  ''   {(1/(1+r))  AA [1- 88(j)] } { 88(s)E(w) + (1- 88(s))b}  [64] r T+R s-1

T s= T

    j=1

Arrival rates are modeled as coming from a distribution with drift, i.e., 8(t)

~ M(L  + L t), a characterization that by itself would produce a changing0 1

reservation wage.  The maximum search period T, after which an individual will

accept any job offer, the expected value of which is given in the last line in

[64], and the length of life after T is reached are "free" parameters that can

be chosen to calibrate the model to the data.  While this approach is

computationally more demanding than previous alternatives and in this sense

more expensive, comparatively little is known about the benefits to using such

models.  Comparisons among different approximation strategies, which will

depend upon the types of data available (for example, whether observations are

available on b, the amount of net income received while employed), are clearly

needed.

4.4 Multiple state duration models.
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Labor economists have observed transitions among the labor market states of

employed, unemployed, and not in the labor force (see Troikka (1976); Marston

(1976)) primarily with a view towards interpreting changes in the stocks in

each labor market state.  In this sense, the treatment of the transition data

was basically "unemployment accounting."  In the 1980's a number of authors

proposed behaviorally interesting models of labor market activity where

arrival rates and offer distributions influence movement from state to state. 

All of the estimable models of this sort share the feature of being renewal

processes.  Tuma and Robbins (1980) were one of the earliest such empirical

studies of a two-state model (Employed, Unemployed, or E,U) of labor force

attachment.  In their approach parameters of government income subsidy

programs (i.e., Seattle and Denver Income Maintenance Experiments) influenced

the lengths of employment and unemployment spells.  More formal two-state

models were articulated by Flinn and Heckman (1982), and Burdett, Kiefer, and

Sharma (1985).  Three state models were proposed and formally studied by

Burdett et al. (1984 a,b), Flinn and Heckman (1983), and Mortensen and Neumann

(1984).  All of these models are cast as competing risk models where the

transition from state i to state j is typically modeled as:

AA (X ,X ) =   88 (X )p (X )  [64]ij 1 2 i 1 j 2

where 8  is the arrival rate of some event ("news") in state i, which mayi

depend on a vector of characteristics X , and p  is the probability that state1 j

j will be chosen, which may depend on characteristics X , some of which might2

be specific to state i.  The hazard out of state i is

AA (X)   =  EE AA (X)   [65]i ij

                i ��j

and the density of the state specific durations is:
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g (t **X)    =  AA  exp(- II AA (X)ds). [66]ij ij 0 i
t

No new issues arrive in estimating reduced form versions of these competing

risk models.  Correlations between spells can be allowed due to, say,

individual specific components (Flinn and Heckman, (1983)), but this only

serves to make the likelihood function to be non-separable across states. 

More difficult problems arise when there are three or more states.  To

generate a meaningful K-state model, there must be K-1 shocks.  In the Burdett

et al. model, for example, there are shocks to the wage process and shocks to

the value of home time process that generate movements among the states of

employment, unemployment, and non-participation.  A reservation wage

characterizes the simple search model shown above, and an analogous

characterization of wages, w, and value of home time, v, partitions the sample

space into sets A , i= E,U,N, where  <w,v> g A  implies that state i isi i

chosen.  The problem is that the reservation wage is unknown, as before, but

so is the entire process of changes in the value of home time.  Consequently,

empirical work with multi-state models has used the reduced form approach.

4.5 Equilibrium Search Models.

The prototypal search model provides a simple but elegant description of

unemployment durations and accepted wages, conditional on the form of the wage

distribution being known, but says nothing about the distribution itself. 

This is somewhat paradoxical, and places the theory of wage search as an

explanation not of wages, but of durations. This paradox was pointed out early

on by Diamond (1971), which generated a substantial literature deriving an

equilibrium wage or price distribution.   Subsequent developments by Albrecht25

and Axell (1984), Burdett (1990), and Mortensen (1990) provide the theoretical
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basis for the empirical work that has ensued.  To fix ideas, I briefly

describe Mortensen's (1990) model for the case where workers and firms are

each homogeneous. 

Workers have a reservation wage, w , which solves the usual search problem forr

wealth maximization.  Unemployed workers see jobs arrive at rate 8 , and they0

accept the first job that offers more than their reservation wage.  While

employed at wage W a worker's reservation wage is also W.  Job offers arrive

at a rate 8  while employed and jobs "disappear" at the rate *.  Thus the1

steady-state reservation wage solves

                   44
w   = b + ( 66  - 66 ) II (1-F(x))  dxr

0 1
                         w                 [67]r

  [1 + 66 (1-F(x))]1

where 6  = 8 / *, i = 0,1.i i

Firms are identical with productivity level P, face constant returns to scale

in production, and maximize profits by choosing the wage to pay.  The

balancing condition which equates supply and demand is that firms will offer

higher wages if and only if they can expect to get an additional number of

workers to cover the lower per worker profits.  Higher wages attract more

workers to a firm and allows firms to retain the workers longer.  The unique

equilibrium wage distribution implied by this process of wage and employment

determination is:

F(w) =  [1+ 66 ] { 1 - (P-w)  }1
1/2

                                           [68]
     k          (P-w )  1

r 1/2

Here, the fundamental parameters are P, the productivity level, and the three

arrival rates, 8 , 8 , and *.  Together, these three arrival rates determine0 1
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the degree of competition in the labor market.  As 8  6 0, the Diamond's1

monopsony wage occurs: all workers are offered a wage = b; as 8  6 4, workers1

receive the competitive wage, P.  Thus the income distribution in the model is

intimately related to the performance of the labor market.  Mortensen shows

that the lowest wage offer will satisfy w  = w , that is, workers will acceptL r

any job offered to them, and the highest wage offered will satisfy

w  = P - {1/(1+k ) }(P - w ).   [69]H 1 L
2

The basic idea underlying the model is that workers prefer high wages to low,

and that the process of job mobility will carry them through the wage

distribution as the locate higher paying jobs.  The exogenously given rate of

job destruction, *, prevents too much piling up at the top end.  For firms,

wage policy matters, unlike in the standard competitive model.  Paying a low

wage will attract some workers but turnover will be high. Since profits are

(P-w) R(w), this firm will make large profits per employee, but retain few. 

Alternatively, a firm could pay a high wage, which will attract a larger labor

force and retain it longer.  Profit per worker will be lower, but the firm

makes it up in volume.  Because all firms are ex ante identical the Nash

equilibrium in this model requires that expected profits be equal, which

implies that the equilibrium wage distribution traces out the equal profit

constraint.  And this means that the wage density must have an upward sloping

density throughout its range, a result that seems at odds with evidence on

wage distributions.

Obviously the assumption that workers and firms are homogeneous is an

abstraction, and econometric models have attempted to relax this assumption in

different ways.  Eckstein and Wolpin (1990) estimate a related equilibrium

search model due to Albrecht and Axell (1984).  In the Albrecht-Axell model

workers have differing values of non-market time, b, and there are K worker
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types.  Firms differ in their productivity, but since they know that there are

K types of workers, each firm specializes in offering a wage equal to the

reservation wage of one of the K types of workers.  Data on unemployment

spells and wages received on the job are needed to estimate the parameters of

this model. In this model the distribution function of wages is a step

function with discrete jumps at each of the K reservation wages.  Because the

number of distinct wages seen in any data set would make K a very large

number, Eckstein and Wolpin keep K manageable by assuming that there is

measurement error in recorded wages.  Applying their specification to NLSY

data on wages and search durations produces moderately good fits to the

duration data, but a terrible fit to the wage data, even though measurement

error in wages is explicitly treated. 

Kiefer and Neumann (1994) estimate the homogeneous equilibrium search model

described above using panel data from the NLSY similar to that used by

Eckstein and Wolpin.  They look at the spell of unemployment between the end

of formal education and the first job, the wage received on the first job, the

duration of the job, and why the job ended.  To produce homogeneous samples

they stratify on sex, level of formal education, and race.  Kiefer and Neumann

(1994) propose the estimators

w    = min { w  },   w  = max { w  }  [70]r H
i i

p   = [ (1+ 00)/ 00] w   - [ 1/ 00] w [71]^ H r

 where

00    = ( 1 + 88 / ** )   - 1 > 0  [72]1
2

The estimators w  and w   are super-efficient estimators and the theory ofr H

local cuts (Christensen and Kiefer, 1994) justifies conditioning on these

values to estimate the other parameters and allows development of the

appropriate distribution theory for the parameter 2 = ( 8 , 8 , *) from the0 1

profile likelihood with w  and w  substituted in for the true values.   As vanr H
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den Berg and Ridder (1994) note, these estimators are sensitive to measurement

error, but at least for the case of classical measurement error in small

samples their performance actually is improved. In small samples the extremum

estimators are biased - w  is over-estimated and w  is underestimated; thisr H

bias disappears asymptotically.  However, classical measurement error adds

noise to each observation so that the observed sample minimum is likely to

have negative measurement error, and conversely for the sample maximum.  This

partially offsets the bias in the extremum estimator.  Of course, "classical"

measurement error may be the least likely type of measurement error to find in

large panel data sets, so these comforting results about measurement error may

be only a matter of curiosity.   Applying this model to the NLSY data produces

a reasonable fit to the duration data, but bad fit to the wage data, a result

that echoes Eckstein and Wolpin (1990).  Bowles, Kiefer, and Neumann (1995)

use the same data but introduce heterogeneity in market productivity with a

discrete mixture of firm productivity types.  They find that they can fit the

wage data arbitrarily well with a small number of types, typically less than

8.  A discrete mixture has the disadvantage that the likelihood function

becomes non-differentiable in the support points and probability weights of

the mixture, but this problem can be handled by an application of the EM

algorithm as suggested by Heckman and Singer (1984).  

Van den Berg and Ridder have examined aspects of the equilibrium search model

using a consistent methodology in several papers (Van den Berg and Ridder

(1993, 1994); Koning, Ridder, and van den Berg (1995)).  Their approach is

complementary to Bowles, Kiefer, and Neumann (1995).  In van den Berg and

Ridder (1993) they treat both within and between market heterogeneity across

worker types by allowing the fundamental parameters to vary with regressors,

i.e.,

88  = exp(X ""), 88  = exp(X1 $$),  and ** = exp(X (() [73]0 0 1 1 2
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and they treat wage offers as being measured with error.  In subsequent work

(Konig, Ridder, and van den Berg (1995)) using samples of the Organization for

Strategic Labour Market Research panel data they allow for the fundamental

parameters to vary with regressors as in [71] and also treat market

productivity, P, as heterogenous across markets.  In this latter case they use

a log normal for the mixing distribution.  Their results suggest that a two-

parameter distribution like the log normal provides an acceptable fit to the

data.

Of course, this work on empirical equilibrium models is too recent to have

been subjected to a variety of comparisons to indicate which parts of the

models are robust, and which are sensitive, to changes in assumptions and

techniques.  There is clearly room for comparative work among these

approaches, particularly as the computational demands of the models increases. 

That said, it is equally clear that the equilibrium search framework has open

new research areas in econometrics and in labor economics, which will, I hope,

be filled in the near future.

5. Summary.

A considerable amount of work has been undertaken in bringing the analysis of

dynamic event histories into the mainstream of applied econometric work in

microeconomics, and the hazard approach to modelling these events is now

standard.  This has led to a careful modelling of the probabilistic structure

of the data, including the sampling plan that generated the data.  These

considerations were rarely present in earlier work.  The standard workhorse of

applied econometrics -- the linear model-- retains some applications in

duration models, but its use is limited, particularly where time-varying

covariates are an essential element of the problem.  The initial attraction of

non-regression models was their facility at incorporating censored
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observations.  Current work on the effects of turnover and Unemployment

Insurance (e.g., Anderson and Meyer (1993,1994), Meyer (1990)) routinely uses

flexibly parameterized proportional hazard models even when censoring is not

an issue.  

Diagnostic testing of empirical duration models translates well, although not

perfectly, from standard biostatistical applications.  Tests for functional

form and for heteroskedasticity are familiar from linear model applications. 

Graphical tests remain useful, and in some circumstances observed departures

from a hypothesized relation can be formally tested.  Cox's (1972)

proportional hazard model is in frequent use, and diagnostic tests based on it

are available in both discrete and continuous varieties, with a choice between

the two made presumably by weighing power and computation time.

Because duration models are typically non-linear there is heightened concern

about the effects of errors in measurement or missing data (unobservables) on

inference.  A complete solution to this problem, in particular, disentangling

duration dependence from unobserved heterogeneity, is not yet available. 

Methods in wide use emphasize the fitting of parametric mixing models, which

can lead to misspecification bias.  Elegant alternatives which emphasize the

fitting of nonparametric mixing distributions are computationally awkward and

lack an asymptotic distribution theory.  Both approaches are avenues of

current research in statistics and applied econometrics.

Finally, the theory of search has had a major impact on the way economists

view temporal processes.  Simple models of job search activity suggest precise

channels by which labor market policy choices --such as the level of

unemployment insurance or the maximum length of benefit receipt--  will work

and these models provide direct guidance on how to incorporate theory and

uncertainty.  Applications of duration models in applied econometrics have
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been relatively successful in reduced form and structural modelling of

discrete state models of small dimension.  Extending these models to larger

dimensions, for example, analyzing life-time labor supply decisions, will

require both new insights from theory and further advances in computation in

the next decade. 
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